A Novel Human BTB-kelch Protein KLHL31, Strongly Expressed in Muscle and Heart, Inhibits Transcriptional Activities of TRE and SRE

  • Yu, Weishi (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Li, Yongqing (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Zhou, Xijin (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Deng, Yun (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Wang, Zequn (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Yuan, Wuzhou (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Li, Dali (Institute of Biomedical Sciences and School of Life Sciences, East China Normal University) ;
  • Zhu, Chuanbing (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Zhao, Xueying (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Mo, Xiaoyang (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Huang, Wen (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Luo, Na (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Yan, Yan (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Ocorr, Karen (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Bodmer, Rolf (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Wang, Yuequn (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Wu, Xiushan (The Center for Heart Development, Key Lab of Ministry of Education for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University)
  • Received : 2007.12.08
  • Accepted : 2008.08.20
  • Published : 2008.11.30

Abstract

The Bric-a-brac, Tramtrack, Broad-complex (BTB) domain is a protein-protein interaction domain that is found in many zinc finger transcription factors. BTB containing proteins play important roles in a variety of cellular functions including regulation of transcription, regulation of the cytoskeleton, protein ubiquitination, angiogenesis, and apoptosis. Here, we report the cloning and characterization of a novel human gene, KLHL31, from a human embryonic heart cDNA library. The cDNA of KLHL31 is 5743 bp long, encoding a protein product of 634 amino acids containing a BTB domain. The protein is highly conserved across different species. Western blot analysis indicates that the KLHL31 protein is abundantly expressed in both embryonic skeletal and heart tissue. In COS-7 cells, KLHL31 proteins are localized to both the nucleus and the cytoplasm. In primary cultures of nascent mouse cardiomyocytes, the majority of endogenous KLHL31 proteins are localized to the cytoplasm. KLHL31 acts as a transcription repressor when fused to GAL4 DNA-binding domain and deletion analysis indicates that the BTB domain is the main region responsible for this repression. Overexpression of KLHL31 in COS-7 cells inhibits the transcriptional activities of both the TPA-response element (TRE) and serum response element (SRE). KLHL31 also significantly reduces JNK activation leading to decreased phosphorylation and protein levels of the JNK target c-Jun in both COS-7 and Hela cells. These results suggest that KLHL31 protein may act as a new transcriptional repressor in MAPK/JNK signaling pathway to regulate cellular functions.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, PCSIRT of Education Ministry of China, National Basic Research Program of China, New Century Excellent Talents in University, China Postdoctoral Science Foundation, Foundation of Hunan Province, Science and Technology Commission of Shanghai Municipality

References

  1. Aggeli, I.K., Gaitanaki, C., Lazou, A., and Beis, I. (2002). Hyperosmotic and thermal stresses activate p38-MAPK in the perfused amphibian heart. J. Exp. Biol. 205, 443-454
  2. Ahmad, K.F., Melnick, A., Lax, S., Bouchard, D., Liu, J., Kiang, C.L.,Mayer, S., Takahashi, S., Licht, J.D, and Prive, G.G. (2003). Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol. Cell 12, 1551-1564 https://doi.org/10.1016/S1097-2765(03)00454-4
  3. Ai, J., Wang, Y., Tan, K., Deng, Y., Luo, N., Yuan, W., Wang, Z., Li, Y., Wang, Y., Mo, X., et al.(2008). A human homolog of mouse Lbh gene, hLBH, expresses in heart and activates SRE and AP-1 mediated MAPK signaling pathway. Mol. Biol. Rep. 35, 179-187 https://doi.org/10.1007/s11033-007-9068-4
  4. Angel P., Hattori K., Smeal T., and Karin M. (1988). The jun protooncogene is positively autoregulated by its product, Jun/AP-1. Cell 55, 875-885 https://doi.org/10.1016/0092-8674(88)90143-2
  5. Bomont, P., Cavalier, L., Blondeau, F., Ben Hamida, C., Belal, S., Tazir, M., Demir, E., Topaloglu, H., Korinthenberg, R., Tuysuz, B., et al.(2000). The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat. Genet. 26, 370-374 https://doi.org/10.1038/81701
  6. Bredholt, G., Storstein, A., Haugen, M., Krossnes, B.K., Husebye, E., Knappskog, P., and Vedeler, C.A. (2006). Detection of autoantibodies to the BTB-kelch protein KLHL7 in cancer sera. Scand. J. Immunol. 64, 325-335 https://doi.org/10.1111/j.1365-3083.2006.01821.x
  7. Bu, X., Avraham, H.K., Li, X., Lim, B., Jiang, S., Fu, Y., Pestell, R.G., and Avraham, S. (2005). Mayven induces c-Jun expression and cyclin D1 activation in breast cancer cells. Oncogene 24, 2398-2409 https://doi.org/10.1038/sj.onc.1208466
  8. Cai, Z., Wang, Y., Yu, W., Xiao, J., Li, Y., Liu, L., Zhu, C., Tan, K., Deng, Y., Yuan, W., et al. (2006). hnulp1, a basic helix-loophelix protein with a novel transcriptional repressive domain, inhibits transcriptional activity of serum reponse factor. Biochem. Biophys. Res. Commun. 343, 973-981 https://doi.org/10.1016/j.bbrc.2006.02.187
  9. Cao, L., Wang, Z., Zhu, C., Zhao, Y., Yuan, W., Li, J., Wang, Y., Ying, Z., Li, Y., Yu, W., et al. (2005). ZNF383, a novel KRABcontaining zinc finger protein, suppresses MAPK signaling pathway. Biochem. Biophys. Res. Commun. 333, 1034-1043 https://doi.org/10.1016/j.bbrc.2005.05.192
  10. Carim-Todd, L., Sumoy, L., Andreu, N., Estivill, X., and Escarceller, M. (2001). Identification and characterization of BTBD1, a novel BTB domain containing gene on human chromosome 15q24. Gene 262, 275-281 https://doi.org/10.1016/S0378-1119(00)00513-8
  11. Couderc, J.L., Godt, D., Zollman, S., Chen, J., Li, M., Tiong, S., Cramton, S.E., Sahut-Barnola, I., and Laski, F.A. (2002). The bric a brac locus consists of two paralogous genes encoding BTB/POZ domain proteins and acts as homeotic and morphogenetic regulator of imaginal development in drosophila. Development 129, 2419-2433
  12. Davis, R.J. (1994). MAPKs: new JNK expands the group. Trends Biochem. Sci. 19, 470-473 https://doi.org/10.1016/0968-0004(94)90132-5
  13. Davis, R.J. (2000). Signal transduction by the JNK group of MAP kinases. Cell.103, 239-252 https://doi.org/10.1016/S0092-8674(00)00116-1
  14. Freire, G., Ocampo, C., Ilbawi, N., Griffin, A.J., and Gupta, M. (2007). Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload. J. Mol. Cell. Cardiol. 43, 465-478 https://doi.org/10.1016/j.yjmcc.2007.07.046
  15. Fu, J., Gao, J., Pi, R., and Liu, P. (2005). An optimized protocol for culture of cardiomyocyte from neonatal rat. Cytotechnology 49, 109-116 https://doi.org/10.1007/s10616-006-6334-6
  16. Fuchs, S.Y., Dolan, L., Davis, R.J, and Ronai, Z. (1996). Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene 13, 1531-1535
  17. Geyer, R., Wee, S., Anderson, S., Yates, J., and Wolf, D.A. (2003). BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 12, 783-790 https://doi.org/10.1016/S1097-2765(03)00341-1
  18. Herrera, R.E., Shaw, P.E., and Nordheim, A. (1989). Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth-factor induction. Nature 340, 68-70 https://doi.org/10.1038/340068a0
  19. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135-2148 https://doi.org/10.1101/gad.7.11.2135
  20. Hood, J.K., and Silver, P.A. (1999). In or out? Regulating nuclear transport. Curr. Opin. Cell Biol. 11, 241-247 https://doi.org/10.1016/S0955-0674(99)80032-5
  21. Huang, H., Petkova, S.B., Cohen, A.W., Bouzahzah, B., Chan, J., Zhou, J.N., Factor, S.M., Weiss, L.M., Krishnamachary, M., Mukherjee, S., et al. (2003). Activation of transcription factors AP-1 and NF-kappa B in murine Chagasic myocarditis. Infect. Immun. 71, 2859-2867 https://doi.org/10.1128/IAI.71.5.2859-2867.2003
  22. Kang, M.I., Kobayashi, A., Wakabayashi, N., Kim, S.G., and Yamamoto, M. (2004). Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc. Nat. Acad. Sci. USA 101, 2046-2051
  23. Kim, K.H., Min, Y.K., Baik, J.H., Lau, L.F., Chaqour, B., and Chung, K.C. (2003). Expression of angiogenic factor Cyr61 during neuronal cell death via the activation of c-Jun N-terminal kinase and serum response factor. J. Biol. Chem. 278, 13847-13854 https://doi.org/10.1074/jbc.M210128200
  24. Kim, T.G., Kraus, J.C., Chen, J., and Lee, Y. (2003). JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. J. Biol. Chem. 278, 42247-42255 https://doi.org/10.1074/jbc.M307386200
  25. Ko, J.H., Son, W., Bae, G.Y., Kang, J.H., Oh, W., and Yoo, O.J. (2006). A new hepatocytic isoform of PLZF lacking the BTB domain interacts with ATP7B, the Wilson disease protein, and positively regulates ERK signal transduction. J. Biol. Chem. 99, 719-734
  26. Kobayashi, A., Kang, M.I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., Igarashi, K., and Yamamoto, M. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24, 7130-7139 https://doi.org/10.1128/MCB.24.16.7130-7139.2004
  27. Kreusch, A., Pfaffinger, P.J., Stevens, C.F., and Choe, S. (1998). Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392, 945-948 https://doi.org/10.1038/31978
  28. Kroll, J., Shi, X.Z., Caprilli, A., Liu, H.H., Waskow, C., Lin, K.M., Miyazaki, T., Rodewald, H.R., and Sato, T.N. (2005). The BTBkelch protein KLHL6 is involved in B-lymphocyte antigen receptor signaling and germinal center formation. Mol. Cell. Biol. 25, 8531-8540 https://doi.org/10.1128/MCB.25.19.8531-8540.2005
  29. Laezza, F., Wilding, T.J., Sequeira, S., Coussen, F., Zhang, X.Z., Hill-Robinson, R., Mulle, C., Huettner, J.E., and Craig, A.M. (2007). KRIP6: A novel BTB/kelch protein regulating function of kainite receptors. Mol. Cell. Neurosci. 34, 539-550 https://doi.org/10.1016/j.mcn.2006.12.003
  30. Leventaki, V., Drakos, E., Medeiros, L.J., Lim, M.S., Elenitoba-Johnson, K.S., Claret, F.X., and Rassidakis, G.Z. (2007). NPMALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma. Blood 110, 1621-1630 https://doi.org/10.1182/blood-2006-11-059451
  31. Lewis, T.S., Shapiro, P.S., and Ahn, N.G., (1998). Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49-139 https://doi.org/10.1016/S0065-230X(08)60765-4
  32. Li, X., Peng, H., Schultz, D.C., Lopez-Guisa, J.M., and Rauscher, F.L. (1999). Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein. Cancer Res. 59, 5275-5282
  33. McDonald, O.G., Wamhoff, B.R., Hoofnagle, M.H., and Owens, G.K. (2006). Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo .J. Clin. Invest. 116, 36-48 https://doi.org/10.1172/JCI26505
  34. Melnick, A., Carlile, G., Ahmad, K.F., Kiang, C.L., Corcoran, C., Bardwell, V., Prive, G.G., and Licht, J.D. (2002). Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol. Cell. Biol. 22, 1804-1818 https://doi.org/10.1128/MCB.22.6.1804-1818.2002
  35. Miano, J.M., Ramanan, N., Georger, M.A., de Nesy Bentley, K.L., Emerson, R.L., Balza, R.O., Jr., Xiao, Q., Weiler, H., Ginty, D.D., and Misra, R.P. (2004). Restricted inactivation of serum response factor to the cardiovascular system. Proc. Nat. Acad. Sci. USA 101, 17132-17137
  36. Minor, D.L., Lin, Y.F., Mobley, B.C., Avelar, A., Jan, Y.N., Jan, L.Y., and Berger, J.M. (2000). The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 102, 657-670 https://doi.org/10.1016/S0092-8674(00)00088-X
  37. Musti, A.M., Treier, M., and Bohmann, D. (1997). Reduced ubiquitin-dependent degradation of c-jun after phosphorylation by MAP kinases. Science 275, 400-402 https://doi.org/10.1126/science.275.5298.400
  38. Nacak, T.G., Alajati, A., Leptien, K., Fulda, C., Weber, H., Miki, T., Czepluch, F.S., Waltenberger, J., Wieland, T., Augustin, H.G., et al. (2007). The BTB-Kelch protein kleip controls endothelial migration and sprouting angiogenesis. Circ. Res. 100, 1155-1163 https://doi.org/10.1161/01.RES.0000265844.56493.ac
  39. Nakayama, K., Nakayama, N., Davidson, B., Sheu, J.J., Jinawath, N., Santillan, A., Salani, R., Bristow, R.E., Morin, P.J., Kurman, R.J., et al. (2006). A BTB/POZ protein, NAC-1, is related to tumor recurrence and is essential for tumor growth and survival. Proc. Nat. Acad. Sci. USA 103 , 18739-18744
  40. Parlakian, A., Tuil, D., Hamard, G., Tavernier, G., Hentzen, D., Concordet, J.P., Paulin, D., Li, Z., and Daegelen, D. (2004). Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. Mol. Cell. Biol. 24, 5281-5289 https://doi.org/10.1128/MCB.24.12.5281-5289.2004
  41. Pires de Miranda, M., Reading, P.C., Tscharke, D.C., Murphy, B.J., and Smith, G.L. (2003). The vaccinia virus kelch-like protein C2L affects calcium-independent adhesion to the extracellular matrix and inflammation in a murine intradermal model. J. General Virol. 84, 2459-2471 https://doi.org/10.1099/vir.0.19292-0
  42. Prag, S., and Adams, J.C. (2003). Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animal. BMC Bioinformatics 4, 42-62 https://doi.org/10.1186/1471-2105-4-42
  43. Qi, J., Zhang, X., Zhang, H.K., Yang, H.M., Zhou, Y.B., and Han, Z.G. (2006). ZBTB34, a novel human BTB/POZ zinc finger protein, is a potential transcriptional repressor. Mol. Cell. Biochem. 290, 159-167 https://doi.org/10.1007/s11010-006-9183-x
  44. Reszka, A.A., Seger, R., Diltz, C.D., Krebs, E.G., and Fischer, E.H. (1995). Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Nat. Acad. Sci. USA 92, 8881-8885
  45. Rozek, D., and Pfeifer, G..P. (1993). In vivo protein-DNA interactions at the c-jun promoter: preformed complexes mediate the UV response. Mol. Cell. Biol. 13, 5490-5499 https://doi.org/10.1128/MCB.13.9.5490
  46. Shaffer, A.L., Yu, X., He, Y., Boldrick, J., Chan, E.P., and Staudt, L.M. (2000). BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199-212 https://doi.org/10.1016/S1074-7613(00)00020-0
  47. Shaknovich, R., Yeyati, P.L., Ivins, S., Melnick, A., Lempert, C., Waxman, S., Zelent, A., and Licht, J.D. (1998). The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol. Cell. Biol. 18, 5533-5545 https://doi.org/10.1128/MCB.18.9.5533
  48. Stogios, P.J., and Prive, G.G. (2004). The BACK domain in BTBkelch proteins. Trends Biochem. 29, 634-637 https://doi.org/10.1016/j.tibs.2004.10.003
  49. Stogios, P.J., Downs, G.S., Jauhal, J.J., Nandra, S.K., and Prive, G.G. (2005). Sequence and structural analysis of BTB domain proteins. Genome Biol. 6, R82 https://doi.org/10.1186/gb-2005-6-10-r82
  50. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  51. Wang, S.H., Zheng, H.L., Esaki, Y., Kelly, F., and Yan, W. (2006). Cullin3 Is a KLHL10-Interacting protein preferentially expressed during late spermiogenesis. Biol. Reprod. 74, 102-108 https://doi.org/10.1095/biolreprod.105.045484
  52. Whitmarsh, A.J., and Davis, R.J. (1996). Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. 74, 589-607 https://doi.org/10.1007/s001090050063
  53. Whitmarsh, A.J., and Davis, R.J. (2000). Regulation of transcription factor function by phosphorylation. Cell. Mol. Life Sci. 57, 1172-1183 https://doi.org/10.1007/PL00000757
  54. Wilkins, A., Ping, Q., and Carpenter, C.L. (2004). RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev. 18, 856-861 https://doi.org/10.1101/gad.1177904
  55. Wu, Y.L., and Gong, Z. (2004). A novel zebrafish kelchlike gene klhl and its human ortholog KLHL display conserved expression patterns in skeletal and cardiac muscles. Gene 338, 75-83 https://doi.org/10.1016/j.gene.2004.05.016
  56. Xia, Y., Wu, Z.G., Su., B., Murray, B., and Karin, M. (1998). JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev.12, 3369-3381 https://doi.org/10.1101/gad.12.21.3369
  57. Xu, L., Wei, Y., Reboul, J., Vaglio, P., Shin, T.H., Vidal, M., Elledge, S.J., and Harper, J.W. (2003). BTB proteins are substratespecific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316-321 https://doi.org/10.1038/nature01985
  58. Yang, S.H., Sharrocks, A.D., and Whitmarsh, A.J. (2003). Transcriptional regulation by the MAP kinase signaling cascades. Gene 320, 3-21 https://doi.org/10.1016/S0378-1119(03)00816-3
  59. Ye, B.H., Lista, F., Lo Coco, F., Knowles, D.M., Offit, K., Chaganti, R.S., and Dalla-Favera, R. (1993). Alterations of a zinc fingerencoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747-750 https://doi.org/10.1126/science.8235596
  60. Yeyati, P.L., Shaknovich, R., Boterashvili, S., Li, J., Ball, H.J., Waxman, S., Nason-Burchenal, K., Dmitrovsky, E., Zelent, A., and Licht, J.D. (1999). Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 18, 925-934 https://doi.org/10.1038/sj.onc.1202375
  61. Ziegelbauer, J., Shan, B., Yager, D., Larabell, C., Hoffmann, B., and Tjian, R. (2001). Transcription factor MIZ-1 is regulated via microtubule association. Mol. Cell 8, 339-349 https://doi.org/10.1016/S1097-2765(01)00313-6
  62. Zollman, S., Godt, D., Prive, G.G., Couderc, J.L., and Laski, F.A. (1994). The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Nat. Acad. Sci. USA 91, 10717-10721