• Title/Summary/Keyword: reporter assay

Search Result 317, Processing Time 0.028 seconds

Effects of Zizyphi Spinosae Extract on Cisplatin and t-Butylhydroperoxide Induced Acute Renal Failure in Rabbits (토끼에서 cisplatin에 의해 유도된 급성 신부전시 산조인 추출물의 효과)

  • Kim, Jae Young;Kim, Chung Hui
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.777-783
    • /
    • 2014
  • Cathepsin D (CtsD), an aspartyl peptidase, is involved in apoptosis, resulting in the release of cytochrome C from mitochondria in cells. Here, we investigated microRNA regulation of CtsD expression in 3T3-L1 cells. First, we observed the expression of CtsD in cells in response to doxorubicin (Dox). As expected, the level of CtsD mRNA increased in 3T3-L1 cells exposed to Dox in a dose-dependent manner. The cellular viability of ectopically expressed CtsD cells was decreased. Next, we used the miRanda program to search for particular microRNA targeting CtsD. MiR-145 was selected as a putative controller of CtsD because it had a high mirSVR score. In a reporter assay, the luciferase activity of cells containing the CtsD 3'-UTR region decreased in cells transfected with a miR-145 mimic compared to that of a control. The level of CtsD expression was down-regulated in preadipocytes ectopically expressing miR-145 and up-regulated by an miR-145 inhibitor. Cells also suppressed miR-145 expression when exposed to Dox. The miR-145 inhibitor reduced the cellular viability of 3T3-L1 cells. Taken together, these data suggest that miR-145 regulates CtsD-mediated cell death in adipocytes. These findings may have valuable implications concerning the molecular mechanism of CtsD-mediated cell death in obesity, suggesting that CtsD could be a useful therapeutic tool for the prevention and treatment of obesity by regulating fat cell numbers.

Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells

  • Bak, Min Ji;Truong, Van-Long;Ko, Se-Yeon;Nguyen, Xuan Ngan Giang;Jun, Mira;Hong, Soon-Gi;Lee, Jong-Won;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.423-430
    • /
    • 2016
  • Background: The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. Methods: Red ginseng oil (RGO) was extracted using a supercritical $CO_2$ extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. Results: The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0] tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. Conclusion: RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.

Wnt7b is Upregulated in Macrophages during Thymic Regeneration and Negatively Regulated by RANKL (흰쥐 가슴샘 재생과정 동안 대식세포에서 Wnt 7b의 발현증가 및 RANKL에 의한 발현조절)

  • Kim, Jong-Gab;Kim, Sung-Min;Kim, Bong-Seon;Kim, Jae-Bong;Yoon, Sik;Bae, Soo-Kyung
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.923-930
    • /
    • 2007
  • Thymus can regenerate to its normal mass within 14 days after acute involution induced by cyclophosphamide (CY) in adult rat. Despite the established role of Wnt pathways in the process of thymus development, they have not yet been associated with the regeneration of adult thymus. The purpose of this study was to investigate whether Wnt7b, which is expressed in developing thymic epithelial cells rather than in thymocytes, is modulated during thymic regeneration in adult rat. Here, we show that Wnt7b expression was up-regulated in the regenerating thymus. Cells immunolabeled for the Wnt7b were identified as macrophages. Furthermore, Wnt7b gene expression was decreased by the treatment of receptor activator of NF-kappaB ligand (RANKL). Taken together, our results demonstrate that Wnt7b gene expression was increased in macrophages during thymic regeneration and negatively regulated by RANKL.

Transcriptional Regulation of MicroRNA-17 by PPARγ in Adipogenesis (지방분화시 PPARγ에 의한 microRNA-17의 발현 조절)

  • Bae, In-Seon;Kim, Hyun-Ji;Chung, Ki Yong;Choi, Inho;Kim, Sang Hoon
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.323-328
    • /
    • 2014
  • MicroRNAs comprise a family of small noncoding RNAs that modulate physiological processes, including adipogenesis. MicroRNA-17 (miR-17) promotes adipocyte differentiation and enhances lipid accumulation. The transcriptional regulation of miR-17 during adipogenesis remains unknown. In this study, we investigated whether miR-17 is a target of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), which is a key regulator of adipogenesis. The levels of miR-17 and the expression of $PPAR{\gamma}$ increased after the induction of adipocyte differentiation. Three putative peroxisome proliferator response elements (PPREs) were identified in the miR-17 promoter region. Using chromatin immunoprecipitation and luciferase reporter assays, we observed the interaction of $PPAR{\gamma}$ with the miR-17 promoter. Mutagenesis experiments showed that the -677/-655 region of the miR-17 promoter could function as a PPRE site. These results suggest that $PPAR{\gamma}$ is essential for transcriptional activation of the miR-17 gene, thereby contributing to understanding the molecular mechanism of adipogenesis in adipocytes.

MicroRNA-766-3p Inhibits Tumour Progression by Targeting Wnt3a in Hepatocellular Carcinoma

  • You, Yu;Que, Keting;Zhou, Yun;Zhang, Zhen;Zhao, Xiaoping;Gong, Jianpin;Liu, Zuojin
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.830-841
    • /
    • 2018
  • Recent studies have indicated that microRNAs (miRNAs) play an important role in hepatocellular carcinoma (HCC) progression. In this study, we showed that miR-766-3p was decreased in approximately 72% of HCC tissues and cell lines, and its low expression level was significantly correlated with tumour size, TNM stage, metastasis, and poor prognosis in HCC. Ectopic miR-766-3p expression inhibited HCC cell proliferation, colony formation, migration and invasion. In addition, we showed that miR-766-3p repressed Wnt3a expression. A luciferase reporter assay revealed that Wnt3a was a direct target of miR-766-3p, and an inverse correlation between miR-766-3p and Wnt3a expression was observed. Moreover, Wnt3a up-regulation reversed the effects of miR766-3p on HCC progression. In addition, our study showed that miR-766-3p up-regulation decreased the nuclear ${\beta}-catenin$ level and expression of Wnt targets (TCF1 and Survivin) and reduced the level of MAP protein regulator of cytokinesis 1 (PRC1). However, these effects of miR-766-3p were reversed by Wnt3a up-regulation. In addition, PRC1 upregulation increased the nuclear ${\beta}-catenin$ level and protein expression of TCF1 and Survivin. iCRT3, which disrupts the ${\beta}-catenin-TCF4$ interaction, repressed the TCF1, Survivin and PRC1 protein levels. Taken together, our results suggest that miR-766-3p down-regulation promotes HCC cell progression, probably by targeting the Wnt3a/PRC1 pathway, and miR-766-3p may serve as a potential therapeutic target in HCC.

Role of Sp in the Regulation of Notch1 Gene Expression by Curcumin (커큐민에 의한 노치발현 조절에서 Sp의 역할)

  • Park, Seon-Yeong;Kang, Yong-Gyu;Bae, Yun-Hee;Kim, Su-Ryun;Park, Hyun-Joo;Kang, Young-Soon;Kim, Mi-Kyoung;Wee, Hee-Jun;Jang, Hye-Ock;Bae, Moon-Kyoung;Woo, Jae Suk;Bae, Soo-Kyung
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Curcumin has diverse anticancer activities that lead to tumor growth inhibition of cancer cells and induction of apoptosis. Curcumin is involved in the regulation of multiple genes via transcription factors including NF-${\kappa}B$, STATs, AP1, and SP. Notch signaling plays critical roles in maintaining the balance between cell proliferation, differentiation and apoptosis, and thereby may contribute to the development of various cancers involving breast cancer. This study was to investigate the effects of curcumin on Notch1 gene expression and to explore the underlying mechanism. Here, we found that curcumin decreased the levels of Notch1 mRNA and protein in MDA-MB-231 human breast cancer cells, along with the downregulation of Sp family genes (Sp1, Sp2, Sp3, and Sp4). The repressive effect of curcumin on Notch1 gene transcription was confirmed by performing Notch1 promoter-driven reporter assay and three Sp-binding sites were identified on Notch1 promoter that may act as curcumin-respose elements. Moreover, treatment with mitramycin A, a specific Sp inhibitor, decreased the levels of Notch1 mRNA and protein in human breast cancer cells. Taken together, our results indicate that Notch1 gene expression is downregulated by curcumin, at least in part, through the suppression of Sp family, which may lead to apoptosis in human breast cancer cells.

Effects of Amomi, Semen Extract on Synthesis of Insulin-like Growth Factor-1 and Anti-wrinkle in Skin (사인추출물의 인슐린 유사 성장인자-3의 합성과 피부 노화 개선에 대한 효과)

  • Choi Gyu Ho;Kim Su Nam;Lee So Hee;Sung Dae Seok;Son Eui Dong;Lee Chang Hoon;Lee Byeong Gon;Jang Ih Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.389-392
    • /
    • 2004
  • We screened several materials to stimulate IGF-1 promoter activity using luciferase reporter assay and found that Amomi Semen extract (ASE) among them is the most powerful stimulator We also studied about the anti-wrinkle effect of ethanolic extract of Amoni Semen in vitro and in vivo. Semi-quantitative RT-PCR showed that the extract elevated the presence level of IGF-1 mRNA. And $[^3H]$ proline incorporation and semi-quantitative RT-PCR showed that the extract increased the expression of type-I collagen compared with vehicle in vitro and in vivo, respectively. Significant inhibition of MMP-1 expression was determined by ELISA and Western blot. Finally, topical treatment of the extract on hairless mouse's dorsal skin expanded the volume of collagen and dermal thickness. These results suggest that Amomi Semen may be a good candidate for improving extracellular matrix through the increase of collagen expression and inhibition of MMP-1 expression. Moreover, this study enables us to guess that IGF-1 stimulated by the extract may be involved in the mechanism of anti-wrinkle effect of it.

Modulation of Activator Protein-1 (AP-1) and MAPK Pathway by Flavonoids in Human Prostate Cancer PC3 Cells

  • Gopalakrishnan, Avanthika;Xu, Chang-Jiang;Nair, Sujit S.;Chen, Chi;Hebbar, Vidya;Kong, Ah-Ng Tony
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.633-644
    • /
    • 2006
  • In last couple of decades the use of natural compounds like flavonoids as chemopreventive agents has gained much attention. Our current study focuses on identifying chemopreventive flavonoids and their mechanism of action on human prostate cancer cells. Human prostate cancer cells (PC3), stably transfected with activator protein 1 (AP-1) luciferase reporter gene were treated with four main classes of flavonoids namely flavonols, flavones, flavonones, and isoflavones. The maximum AP-1 luciferase induction of about 3 fold over control was observed with $20\;{\mu}M$ concentrations of quercetin, chrysin and genistein and $50\;{\mu}M$ concentration of kaempferol. At higher concentrations, most of the flavonoids demonstrated inhibition of AP-1 activity. The MTS assay for cell viability at 24 h showed that even at a very high concentration $(500\;{\mu}M)$, cell death was minimal for most of the flavonoids. To determine the role of MAPK pathway in the induction of AP-1 by flavonoids, Western blot of phospho MAPK proteins was performed. Four out of the eight flavonoids namely kaempferol, apigenin, genistein and naringenin were used for the Western Blot analysis. Induction of phospho-JNK and phospho-ERK activity was observed after two hour incubation of PC3-AP1 cells with flavonoids. However no induction of phospho-p38 activity was observed. Furthermore, pretreating the cells with specific inhibitors of JNK reduced the AP-1 luciferase activity that was induced by genistein while pretreatment with MEK inhibitor reduced the AP-1 luciferase activity induced by kaempferol. The pharmacological inhibitors did not affect the AP-1 luciferase activity induced by apigenin and naringenin. These results suggest the possible involvement of JNK pathway in genistein induced AP-1 activity while the ERK pathway seems to play an important role in kaempferol induced AP-1 activity.

MicroRNA-3200-5p Promotes Osteosarcoma Cell Invasion via Suppression of BRMS1

  • Li, Gen;Li, Li;Sun, Qi;Wu, Jiezhou;Ge, Wei;Lu, Guanghua;Cai, Ming
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.523-531
    • /
    • 2018
  • Tumour metastasis is one of the most serious challenges of cancer as it is the major cause of mortality in patients with solid tumours, including osteosarcoma (OS). In this regard, anti-metastatic genes have potential for metastasis inhibition strategies. Recent evidence showed the importance of breast cancer metastasis suppressor 1 (BRMS1) in control of OS invasiveness, but the regulation of BRMS1 in OS remains largely unknown. Here, we used bioinformatics analyses to predict BRMS1-targeting microRNAs (miRNAs), and the functional binding of miRNAs to BRMS1 mRNA was evaluated using a dual luciferase reporter assay. Among all BRMS1-targeting miRNAs, only miR-151b, miR-7-5p and miR-3200-5p showed significant expression in OS specimens. Specifically, we found that only miR-3200-5p significantly inhibited protein translation of BRMS1 via pairing to the 3'-UTR of the BRMS1 mRNA. Moreover, we detected significantly lower BRMS1 and significantly higher miR-3200-5p in the OS specimens compared to the paired adjacent non-tumour bone tissues. Furthermore, BRMS1 and miR-3200-5p levels were inversely correlated to each other. Low BRMS1 was correlated with metastasis and poor patient survival. In vitro, overexpression of miR-3200-5p significantly decreased BRMS1 levels and promoted OS cell invasion and migration, while depletion of miR-3200-5p significantly increased BRMS1 levels and inhibited OS cell invasion and migration. Thus, our study revealed that miR-3200-5p may be a critical regulator of OS cell invasiveness.

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo;Zhang, Junling;Ji, Chunxue;Wang, Lixuan
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.543-549
    • /
    • 2016
  • MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.