DOI QR코드

DOI QR Code

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo (No. 2 Department of Neurology, Brain Hospital Affiliated to Cangzhou Central Hospital, Intersection of Xinhua Road and Yong'an Avenue) ;
  • Zhang, Junling (No. 2 Department of Neurology, Brain Hospital Affiliated to Cangzhou Central Hospital, Intersection of Xinhua Road and Yong'an Avenue) ;
  • Ji, Chunxue (No. 2 Department of Neurology, Brain Hospital Affiliated to Cangzhou Central Hospital, Intersection of Xinhua Road and Yong'an Avenue) ;
  • Wang, Lixuan (No. 2 Department of Neurology, Cangzhou Central Hospital)
  • Received : 2016.02.23
  • Accepted : 2016.05.09
  • Published : 2016.07.31

Abstract

MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

Keywords

References

  1. Alves, G., Bronnick, K., Aarsland, D., Blennow, K., Zetterberg, H., Ballard, C., Kurz, M.W., Andreasson, U., Tysnes, O.B., Larsen, J.P., et al. (2010). CSF amyloid-beta and tau proteins, and cognitive performance, in early and untreated Parkinson's disease: the Norwegian ParkWest study. J. Neurol. Neurosurg. Psychiatry 81, 1080-1086. https://doi.org/10.1136/jnnp.2009.199950
  2. Ayton, S., Lei, P., Hare, D.J., Duce, J.A., George, J.L., Adlard, P.A., McLean, C., Rogers, J.T., Cherny, R.A., Finkelstein, D.I., et al. (2015). Parkinson's disease iron deposition caused by nitric oxide-induced loss of beta-amyloid precursor protein. J. Neurosci. 35, 3591-3597. https://doi.org/10.1523/JNEUROSCI.3439-14.2015
  3. Burgos, K., Malenica, I., Metpally, R., Courtright, A., Rakela, B., Beach, T., Shill, H., Adler, C., Sabbagh, M., Villa, S., et al. (2014). Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PLoS One 9, e94839. https://doi.org/10.1371/journal.pone.0094839
  4. Burte, F., Carelli, V., Chinnery, P.F., and Yu-Wai-Man, P. (2015). Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11-24.
  5. Christopher, L., Duff-Canning, S., Koshimori, Y., Segura, B., Boileau, I., Chen, R., Lang, A.E., Houle, S., Rusjan, P., and Strafella, A.P. (2015). Salience network and parahippocampal dopamine dysfunction in memory-impaired Parkinson disease. Ann. Neurol. 77, 269-280. https://doi.org/10.1002/ana.24323
  6. de Rijk, M.C., Breteler, M.M., Graveland, G.A., Ott, A., Grobbee, D.E., van der Meche, F.G., and Hofman, A. (1995). Prevalence of Parkinson's disease in the elderly: the Rotterdam study. Neurology 45, 2143-2146. https://doi.org/10.1212/WNL.45.12.2143
  7. Duce, J.A., Tsatsanis, A., Cater, M.A., James, S.A., Robb, E., Wikhe, K., Leong, S.L., Perez, K., Johanssen, T., Greenough, M.A., et al. (2010). Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell 142, 857-867. https://doi.org/10.1016/j.cell.2010.08.014
  8. Exner, N., Lutz, A.K., Haass, C., and Winklhofer, K.F. (2012). Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038-3062. https://doi.org/10.1038/emboj.2012.170
  9. Graves, P., and Zeng, Y. (2012). Biogenesis of mammalian microRNAs: a global view. Genomics Proteomics Bioinformatics 10, 239-245. https://doi.org/10.1016/j.gpb.2012.06.004
  10. Gray, N.E., Sampath, H., Zweig, J.A., Quinn, J.F., and Soumyanath, A. (2015). Centella asiatica attenuates amyloid-beta-induced oxidative stress and mitochondrial dysfunction. J. Alzheimers Dis. 45, 933-946. https://doi.org/10.3233/JAD-142217
  11. Guo, W., Jiang, L., Bhasin, S., Khan, S.M., and Swerdlow, R.H. (2009). DNA extraction procedures meaningfully influence qPCRbased mtDNA copy number determination. Mitochondrion 9, 261-265. https://doi.org/10.1016/j.mito.2009.03.003
  12. Irwin, D.J., Lee, V.M., and Trojanowski, J.Q. (2013). Parkinson's disease dementia: convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat. Rev. Neurosci. 14, 626-636. https://doi.org/10.1038/nrn3549
  13. Lees, A.J. (2007). Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday. Mov. Disord. 22 Suppl 17, S327-334. https://doi.org/10.1002/mds.21684
  14. Liu, Y., Zhang, R.Y., Zhao, J., Dong, Z., Feng, D.Y., Wu, R., Shi, M., and Zhao, G. (2015). Ginsenoside Rd protects SH-SY5Y cells against 1-Methyl-4-phenylpyridinium induced Injury. Int. J. Mol. Sci. 16, 14395-14408. https://doi.org/10.3390/ijms160714395
  15. Luoma, P., Melberg, A., Rinne, J.O., Kaukonen, J.A., Nupponen, N.N., Chalmers, R.M., Oldfors, A., Rautakorpi, I., Peltonen, L., Majamaa, K., et al. (2004). Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364, 875-882. https://doi.org/10.1016/S0140-6736(04)16983-3
  16. McCarthy, R.C., Park, Y.H., and Kosman, D.J. (2014). sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep. 15, 809-815. https://doi.org/10.15252/embr.201338064
  17. Minones-Moyano, E., Porta, S., Escaramis, G., Rabionet, R., Iraola, S., Kagerbauer, B., Espinosa-Parrilla, Y., Ferrer, I., Estivill, X., and Marti, E. (2011). MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet. 20, 3067-3078. https://doi.org/10.1093/hmg/ddr210
  18. Nussbaum, R.L., and Ellis, C.E. (2003). Alzheimer's disease and Parkinson's disease. N. Engl. J. Med. 348, 1356-1364. https://doi.org/10.1056/NEJM2003ra020003
  19. Owen, A.D., Schapira, A.H.V., Jenner, P., and Marsden, C.D. (1996). Oxidative stress and Parkinson's diseasea. Anna. N Y Acad. Sci. 786, 217-223. https://doi.org/10.1111/j.1749-6632.1996.tb39064.x
  20. Pickrell, A.M., and Youle, R.J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273. https://doi.org/10.1016/j.neuron.2014.12.007
  21. Radad, K.S., Al-Shraim, M.M., Moustafa, M.F., and Rausch, W.D. (2015). Neuroprotective role of thymoquinone against 1-methyl-4-phenylpyridinium-induced dopaminergic cell death in primary mesencephalic cell culture. Neurosciences 20, 10-16.
  22. Reeve, A., Meagher, M., Lax, N., Simcox, E., Hepplewhite, P., Jaros, E., and Turnbull, D. (2013). The impact of pathogenic mitochondrial DNA mutations on substantia nigra neurons. J. Neurosci. 33, 10790-10801. https://doi.org/10.1523/JNEUROSCI.3525-12.2013
  23. Ruszkiewicz, J., and Albrecht, J. (2015). Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem. Int. 88, 66-72. https://doi.org/10.1016/j.neuint.2014.12.012
  24. Schapira, A.H.V. (1995). Oxidative stress in Parkinson's disease. Neuropathol. Appl. Neurobiol. 21, 3-9. https://doi.org/10.1111/j.1365-2990.1995.tb01022.x
  25. Schapira, A.H. (2009). Etiology and pathogenesis of Parkinson disease. Neurol. Clin. 27, 583-603, v. https://doi.org/10.1016/j.ncl.2009.04.004
  26. Schulte, E.C., Fukumori, A., Mollenhauer, B., Hor, H., Arzberger, T., Perneczky, R., Kurz, A., Diehl-Schmid, J., Hull, M., Lichtner, P., et al. (2015). Rare variants in beta-amyloid precursor protein (APP) and Parkinson's disease. Eur. J. Hum. Genet. 23, 1328-1333. https://doi.org/10.1038/ejhg.2014.300
  27. Sheng, B., Wang, X., Su, B., Lee, H.G., Casadesus, G., Perry, G., and Zhu, X. (2012). Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. J. Neurochem. 120, 419-429. https://doi.org/10.1111/j.1471-4159.2011.07581.x
  28. Tan, L., and Yu, J.T. (2014). Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol. Neurobiol. 51, 1249-1262.
  29. Tsou, Y.H., Shih, C.T., Ching, C.H., Huang, J.Y., Jen, C.J., Yu, L., Kuo, Y.M., Wu, F.S., and Chuang, J.I. (2015). Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity. Exp. Neurol. 263, 50-62. https://doi.org/10.1016/j.expneurol.2014.09.021
  30. Vallelunga, A., Ragusa, M., Di Mauro, S., Iannitti, T., Pilleri, M., Biundo, R., Weis, L., Di Pietro, C., De Iuliis, A., Nicoletti, A., et al. (2014). Identification of circulating microRNAs for the differential diagnosis of Parkinson's disease and multiple system atrophy. Front Cell Neurosci. 8, 156.
  31. Westmark, C.J. (2013). What's hAPPening at synapses? The role of amyloid beta-protein precursor and beta-amyloid in neurological disorders. Mol. Psychiatry 18, 425-434. https://doi.org/10.1038/mp.2012.122
  32. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C., et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124. https://doi.org/10.1016/S0092-8674(00)80611-X
  33. Zhang, X., Zuo, X., Yang, B., Li, Z., Xue, Y., Zhou, Y., Huang, J., Zhao, X., Zhou, J., Yan, Y., et al. (2014). MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607-619. https://doi.org/10.1016/j.cell.2014.05.047

Cited by

  1. miRNAs Related to Skeletal Diseases vol.25, pp.17, 2016, https://doi.org/10.1089/scd.2016.0133
  2. The role of epigenetics in osteoarthritis vol.29, pp.1, 2017, https://doi.org/10.1097/BOR.0000000000000355
  3. MicroRNA-Mediated Rescue of Fear Extinction Memory by miR-144-3p in Extinction-Impaired Mice vol.81, pp.12, 2017, https://doi.org/10.1016/j.biopsych.2016.12.021
  4. MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: Implications for virus biology, disease mechanisms and neuropathology vol.13, pp.6, 2017, https://doi.org/10.1371/journal.ppat.1006360
  5. -galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics vol.122, pp.6, 2017, https://doi.org/10.1152/japplphysiol.00018.2017
  6. Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure vol.20, pp.10, 2019, https://doi.org/10.3390/ijms20102451
  7. Relationship between single nucleotide polymorphisms in the 3′UTR of amyloid precursor protein and risk of Alzheimer’s disease and its mechanism vol.39, pp.5, 2016, https://doi.org/10.1042/bsr20182485
  8. Biological and Clinical Relevance of microRNAs in Mitochondrial Diseases/Dysfunctions vol.39, pp.8, 2016, https://doi.org/10.1089/dna.2019.5013
  9. MicroRNA-146a inhibition promotes total neurite outgrowth and suppresses cell apoptosis, inflammation, and STAT1/MYC pathway in PC12 and cortical neuron cellular Alzheimer's disease models vol.54, pp.5, 2016, https://doi.org/10.1590/1414-431x20209665
  10. A Review of miRNAs as Biomarkers and Effect of Dietary Modulation in Obesity Associated Cognitive Decline and Neurodegenerative Disorders vol.14, pp.None, 2021, https://doi.org/10.3389/fnmol.2021.756499