Modulation of Activator Protein-1 (AP-1) and MAPK Pathway by Flavonoids in Human Prostate Cancer PC3 Cells

  • Gopalakrishnan, Avanthika (Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey) ;
  • Xu, Chang-Jiang (Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey) ;
  • Nair, Sujit S. (Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey) ;
  • Chen, Chi (Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey) ;
  • Hebbar, Vidya (Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey) ;
  • Kong, Ah-Ng Tony (Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey)
  • Published : 2006.08.01

Abstract

In last couple of decades the use of natural compounds like flavonoids as chemopreventive agents has gained much attention. Our current study focuses on identifying chemopreventive flavonoids and their mechanism of action on human prostate cancer cells. Human prostate cancer cells (PC3), stably transfected with activator protein 1 (AP-1) luciferase reporter gene were treated with four main classes of flavonoids namely flavonols, flavones, flavonones, and isoflavones. The maximum AP-1 luciferase induction of about 3 fold over control was observed with $20\;{\mu}M$ concentrations of quercetin, chrysin and genistein and $50\;{\mu}M$ concentration of kaempferol. At higher concentrations, most of the flavonoids demonstrated inhibition of AP-1 activity. The MTS assay for cell viability at 24 h showed that even at a very high concentration $(500\;{\mu}M)$, cell death was minimal for most of the flavonoids. To determine the role of MAPK pathway in the induction of AP-1 by flavonoids, Western blot of phospho MAPK proteins was performed. Four out of the eight flavonoids namely kaempferol, apigenin, genistein and naringenin were used for the Western Blot analysis. Induction of phospho-JNK and phospho-ERK activity was observed after two hour incubation of PC3-AP1 cells with flavonoids. However no induction of phospho-p38 activity was observed. Furthermore, pretreating the cells with specific inhibitors of JNK reduced the AP-1 luciferase activity that was induced by genistein while pretreatment with MEK inhibitor reduced the AP-1 luciferase activity induced by kaempferol. The pharmacological inhibitors did not affect the AP-1 luciferase activity induced by apigenin and naringenin. These results suggest the possible involvement of JNK pathway in genistein induced AP-1 activity while the ERK pathway seems to play an important role in kaempferol induced AP-1 activity.

Keywords

References

  1. Agarwal, C., Singh, R. P., and Agarwal, R., Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis, 23, 1869-1876 (2002) https://doi.org/10.1093/carcin/23.11.1869
  2. Agarwal, C., Singh, R. P., Tyagi, A. K., Tecklenburg, M., Sclafani, R. A., and Agarwal, R., Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene, 22, 8271-8282 (2003) https://doi.org/10.1038/sj.onc.1207158
  3. Agarwal, R., Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochem. Pharmacol., 60, 1051-1059 (2000) https://doi.org/10.1016/S0006-2952(00)00385-3
  4. Agarwal, R., Katiyar, S. K., Lundgren, D. W., and Mukhtar, H., Inhibitory effect of silymarin, an anti-hepatotoxic flavonoid, on 12-O-tetradecanoylphorbol-13-acetate-induced epidermal ornithine decarboxylase activity and mRNA in SENCAR mice. Carcinogenesis, 15, 1099-1103 (1994) https://doi.org/10.1093/carcin/15.6.1099
  5. Angel, P. and Karin, M., The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta., 1072, 129-157 (1991)
  6. Boldt, S., Weidle, U. H., and Kolch, W., The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis, 23, 1831-1838 (2002) https://doi.org/10.1093/carcin/23.11.1831
  7. Chan, F. L., Choi, H. L., Chen, Z. Y., Chan, P. S., and Huang, Y., Induction of apoptosis in prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett., 160, 219-228 (2000) https://doi.org/10.1016/S0304-3835(00)00591-7
  8. Chen, S., Ruan, Q., Bedner, E., Deptala, A., Wang, X., Hsieh, T. C., Traganos, F., and Darzynkiewicz, Z., Effects of the flavonoid baicalin and its metabolite baicalein on androgen receptor expression, cell cycle progression and apoptosis of prostate cancer cell lines. Cell Prolif., 34, 293-304 (2001) https://doi.org/10.1046/j.0960-7722.2001.00213.x
  9. Conney, A. H., Lu, Y., Lou, Y., Xie, J., and Huang, M., Inhibitory effect of green and black tea on tumor growth. Proc. Soc. Exp. Biol. Med., 220, 229-233 (1999)
  10. Croisy-Delcey, M., Croisy, A., Croisy, A., Mousset, S., Letourneur, M., Bisagni, E., Jacquemin-Sablon, A., and Pierre, J., Genistein analogues: effects on epidermal growth factor receptor tyrosine kinase and on stress-activated pathways. Biomed. Pharmacother., 51, 286-294 (1997) https://doi.org/10.1016/S0753-3322(97)83545-7
  11. Dong, Z., Lavrovsky, V., and Colburn, N. H., Transformation reversion induced in JB6 RT101 cells by AP-1 inhibitors. Carcinogenesis, 16, 749-756 (1995) https://doi.org/10.1093/carcin/16.4.749
  12. Foletta, V. C., Transcription factor AP-1, and the role of Fra-2. Immunol. Cell Biol., 74, 121-133 (1996)
  13. Frey, R. S. and Singletary, K.W., Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25C expression in immortalized human mammary epithelial cells. J. Nutr., 133, 226-231 (2003)
  14. Frigo, D. E., Duong, B. N., Melnik, L. I., Schief, L. S., Collins- Burow, B. M., Pace, D. K., McLachlan, J. A., and Burow, M. E., Flavonoid phytochemicals regulate activator protein-1 signal transduction pathways in endometrial and kidney stable cell lines. J. Nutr., 132, 1848-1853 (2002)
  15. Gabrielska, J., Oszmianski,J., Zylka, R., and Komorowska, M., Antioxidant activity of flavones from Scutellaria baicalensis in lecithin liposomes. Z Naturforsch [C]., 52, 817-823 (1997)
  16. Gao, J., Arnold, J. T., and Isaacs, J. T., Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. Cancer Res., 61, 5038-5044 (2001)
  17. Geller, J., Sionit, L., Partido, C., Li, L., Tan, X., Youngkin, T., Nachtsheim, D., and Hoffman, R. M., Genistein inhibits the growth of human-patient BPH and prostate cancer in histoculture. Prostate, 34, 75-79 (1998) https://doi.org/10.1002/(SICI)1097-0045(19980201)34:2<75::AID-PROS1>3.0.CO;2-I
  18. Ghosh, P. M., Malik, S. N., Bedolla, R. G., Wang, Y., Mikhailova, M., Prihoda, T. J., Troyer, D. A., and Kreisberg, J. I., Signal transduction pathways in androgen-dependent and - independent prostate cancer cell proliferation. Endocr. Relat. Cancer., 12, 119-134 (2005) https://doi.org/10.1677/erc.1.00835
  19. Gonzalgo,M. L. and Isaacs, W. B., Molecular pathways to prostate cancer. J. Urol., 170, 2444-2452 (2003) https://doi.org/10.1097/01.ju.0000085381.20139.b6
  20. Greco, K. E. and Kulawiak, L., Prostate cancer prevention: risk reduction through life-style, diet, and chemoprevention. Oncol. Nurs. Forum., 21, 1504-1511 (1994)
  21. Hahn, G., Lehmann, H. D., Kurten, M., Uebel, H., and Vogel, G., On the pharmacology and toxicology of silymarin, an antihepatotoxic active principle from Silybum marianum (L.) Gaertn. Arzneimittelforschung, 18, 698-704 (1968)
  22. Isaacs, J. T. and Isaacs, W. B., Androgen receptor outwits prostate cancer drugs. Nat. Med., 10, 26-27 (2004) https://doi.org/10.1038/nm0104-26
  23. Ishikawa, Y. and Kitamura, M., Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int., 58, 1078-1087 (2000) https://doi.org/10.1046/j.1523-1755.2000.00265.x
  24. Jeong, W. S., Kim, I. W., Hu, R., and Kong, A. N., Modulation of AP-1 by natural chemopreventive compounds in human colon HT-29 cancer cell line. Pharm. Res., 21, 649-660 (2004) https://doi.org/10.1023/B:PHAM.0000022412.69380.d7
  25. Jeong, W. S., Kim, I. W., Hu, R., and Kong, A. N., Modulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway. Pharm. Res., 21, 661-670 (2004) https://doi.org/10.1023/B:PHAM.0000022413.43212.cf
  26. Joshi, S. S., Kuszynski, C. A., and Bagchi, D., The cellular and molecular basis of health benefits of grape seed proanthocyanidin extract. Curr. Pharm. Biotechnol., 2, 187- 200 (2001) https://doi.org/10.2174/1389201013378725
  27. Kaminska, B., Pyrzynska, B., Ciechomska, I., and Wisniewska, M., Modulation of the composition of AP-1 complex and its impact on transcriptional activity. Acta. Neurobiol. Exp (Wars)., 60, 395-402 (2000)
  28. Karin, M., The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem., 270, 16483-16486 (1995) https://doi.org/10.1074/jbc.270.28.16483
  29. Karin, M., The regulation of AP-1 activity by mitogen-activated protein kinases. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 351, 127-34 (1996) https://doi.org/10.1098/rstb.1996.0008
  30. Karin, M., Liu, Z., and Zandi, E., AP-1 function and regulation. Curr. Opin. Cell Biol., 9, 240-246 (1997) https://doi.org/10.1016/S0955-0674(97)80068-3
  31. Karin, M., Smeal, T., Binetruy, B., Deng, T., and Chambard, J. C., Control of transcription factors by signal transduction pathways: the beginning of the end. Trends. Biochem. Sci., 17, 418-422 (1992) https://doi.org/10.1016/0968-0004(92)90012-X
  32. Katiyar, S. K., Mohan, R. R., Agarwal, R., and Mukhtar, H., Protection against induction of mouse skin papillomas with low and high risk of conversion to malignancy by green tea polyphenols. Carcinogenesis, 18, 497-502 (1997) https://doi.org/10.1093/carcin/18.3.497
  33. Kong, A. N., Yu, R., Chen, C., Mandlekar, S., and Primiano, T., Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch. Pharm. Res., 23, 1-16 (2000) https://doi.org/10.1007/BF02976458
  34. Kubo, M., Matsuda, H., Tani, T., Arichi, S., Kimura, Y., and Okuda, H., Studies on Scutellariae radix. XII. Anti-thrombic actions of various flavonoids from Scutellariae radix. Chem. Pharm. Bull (Tokyo)., 33, 2411-2415 (1985) https://doi.org/10.1248/cpb.33.2411
  35. Liao, S., Umekita, Y., Guo, J., Kokontis, J. M., and Hiipakka, R. A., Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett., 96, 239-243 (1995) https://doi.org/10.1016/0304-3835(95)03948-V
  36. Litvinov, I. V., De Marzo, A. M., and Isaacs, J. T., Is the Achilles' heel for prostate cancer therapy a gain of function in androgen receptor signaling? J. Clin. Endocrinol. Metab., 88, 2972-2982 (2003) https://doi.org/10.1210/jc.2002-022038
  37. Mallikarjuna, G., Dhanalakshmi, S., Singh, R. P., Agarwal, C., and Agarwal, R., Silibinin protects against photocarcinogenesis via modulation of cell cycle regulators, mitogen-activated protein kinases, and Akt signaling. Cancer Res., 64, 6349-6356 (2004) https://doi.org/10.1158/0008-5472.CAN-04-1632
  38. Messina, M. J., Persky, V., Setchell, K. D., and Barnes, S., Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer., 21, 113-131 (1994) https://doi.org/10.1080/01635589409514310
  39. Motoo, Y. and Sawabu, N., Antitumor effects of saikosaponins, baicalin and baicalein on human hepatoma cell lines. Cancer Lett., 86, 91-95 (1994) https://doi.org/10.1016/0304-3835(94)90184-8
  40. Nelson, W. G., De Marzo, A. M., and Isaacs, W. B., Prostate cancer. N. Engl. J. Med., 349, 366-381 (2003) https://doi.org/10.1056/NEJMra021562
  41. Nguyen, T. T., Tran, E., Ong, C. K., Lee, S. K., Do, P. T., Huynh, T. T., Nguyen, T. H., Lee, J. J., Tan, Y., Ong, C. S., and Huynh, H., Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J. Cell Physiol ., 197, 110-121 (2003) https://doi.org/10.1002/jcp.10340
  42. Nikolic, D. and van Breemen, R. B., New metabolic pathways for flavanones catalyzed by rat liver microsomes. Drug Metab. Dispos., 32, 387-397 (2004) https://doi.org/10.1124/dmd.32.4.387
  43. Onozawa, M., Fukuda, K., Ohtani, M., Akaza, H., Sugimura, T., and Wakabayashi, K., Effects of soybean isoflavones on cell growth and apoptosis of the human prostatic cancer cell line LNCaP. Jpn. J. Clin. Oncol ., 28, 360-363 (1998) https://doi.org/10.1093/jjco/28.6.360
  44. Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W., Emmert-Buck, M. R., Roth, M. J., Petricoin, Iii Ef, and Liotta, L. A., Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene, 20, 1981-1989 (2001) https://doi.org/10.1038/sj.onc.1204265
  45. Ross, R. K., Pike, M. C., Coetzee, G. A., Reichardt, J. K., Yu, M. C., Feigelson, H., Stanczyk, F. Z., Kolonel, L. N., and Henderson, B. E., Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res., 58, 4497-4504 (1998)
  46. Saleem, M., Adhami, V. M., Siddiqui, I. A., and Mukhtar, H., Tea beverage in chemoprevention of prostate cancer: a minireview. Nutr. Cancer., 47, 13-23 (2003) https://doi.org/10.1207/s15327914nc4701_2
  47. Seger, R. and Krebs, E. G., The MAPK signaling cascade. Faseb J., 9, 726-735 (1995) https://doi.org/10.1096/fasebj.9.9.7601337
  48. Shaulian, E. and Karin, M., AP-1 in cell proliferation and survival. Oncogene, 20, 2390-2400 (2001) https://doi.org/10.1038/sj.onc.1204383
  49. Shaulian, E. and Karin, M., AP-1 as a regulator of cell life and death. Nat. Cell Biol., 4, E131-136 (2002) https://doi.org/10.1038/ncb0502-e131
  50. Shi, H., Zhao, B., and Xin, W., Scavenging effects of baicalin on free radicals and its protection on erythrocyte membrane from free radical injury. Biochem. Mol. Biol. Int., 35, 981-994 (1995)
  51. Singh, R. P., Tyagi, A. K., Dhanalakshmi, S., Agarwal, R., and Agarwal, C., Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3. Int. J. Cancer., 108, 733-740 (2004) https://doi.org/10.1002/ijc.11620
  52. Souquet, J. M., Labarbe, B., Le Guerneve, C., Cheynier, V., and Moutounet, M., Phenolic composition of grape stems. J. Agric. Food Chem., 48, 1076-1080 (2000) https://doi.org/10.1021/jf991171u
  53. Uzgare, A. R. and Isaacs, J. T., Enhanced redundancy in Akt and mitogen-activated protein kinase-induced survival of malignant versus normal prostate epithelial cells. Cancer Res., 64, 6190-6199 (2004) https://doi.org/10.1158/0008-5472.CAN-04-0968
  54. Vogt, P. K., The story of Jun. Arch. Biochem. Biophys., 316, 1-4 (1995) https://doi.org/10.1006/abbi.1995.1001
  55. Vogt, P. K. and Bos, T. J., Jun: oncogene and transcription factor. Adv. Cancer Res., 55, 1-35 (1990) https://doi.org/10.1016/S0065-230X(08)60466-2
  56. Wisdom, R., AP-1: one switch for many signals. Exp. Cell Res., 253, 180-185 (1999) https://doi.org/10.1006/excr.1999.4685
  57. Yu, R., Jiao, J. J., Duh, J. L., Tan, T. H., and Kong, A. N., Phenethyl isothiocyanate, a natural chemopreventive agent, activates c-Jun N-terminal kinase 1. Cancer Res., 56, 2954- 2959 (1996)
  58. Zerbini, L. F., Wang. Y., Cho, J. Y., and Libermann, T. A., Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res., 63, 2206-2215 (2003)