• Title/Summary/Keyword: replacement

Search Result 6,936, Processing Time 0.04 seconds

Optimal Preventive Replacement Policies for a Change of Operational Environment (사용환경의 변화에 대한 최적예방교환정책)

  • Kong, M.B.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.507-517
    • /
    • 1995
  • The failure rate of an item depends on operational environment. When an item has a chance failure period and a wearout failure period in sequel, the severity of operational environment causes the increase in the slop of wearout failure rate or the increase in the magnitude of chance failure rate. For such a change of operational environment, this paper concerns the change of optimal preventive replacement time. Two preventive replacement policies, age replacement policy and periodic replacement policy with minimal repair, are considered. Investigated properties are: (a) in age replacement policy, optimal preventive replacement time increases as the chance failure rate increases and optimal preventive replacement time decreases as the slope of wearout failure rate increases, and (b) in periodic replacement policy with minimal repair, optimal preventive replacement time increases as the slope of wearout failure rate increases; however, the change of chance failure rate does not alter the optimal preventive replacement time.

  • PDF

Development and Applications of a Methodology and Computer Algorithms for Long-term Management of Water Distribution Pipe Systems (상수도 배수관로 시스템의 장기적 유지관리를 위한 방법론과 컴퓨터 알고리즘의 개발 및 적용)

  • Park, Suwan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.356-366
    • /
    • 2007
  • In this paper a methodology is developed to prioritize replacement of water distribution pipes according to the economical efficiency of replacement and assess the long-term effects of water main replacement policies on water distribution systems. The methodology is implemented with MATLAB to develop a computer algorithm which is used to apply the methodology to a case study water distribution system. A pipe break prediction model is used to estimate future costs of pipe repair and replacement, and the economically optimal replacement time of a pipe is estimated by obtaining the time at which the present worth of the total costs of repair and replacement is minimum. The equation for estimating the present worth of the total cost is modified to reflect the fact that a pipe can be replaced in between of failure events. The results of the analyses show that about 9.5% of the pipes in the case study system is required to be replaced within the planning horizon. Analyses of the yearly pipe replacement requirements for the case study system are provided along with the compositions of the replacement. The effects of water main replacement policies, for which yearly replacement length scenario and yearly replacement budget scenario are used, during a planning horizon are simulated in terms of the predicted number of pipe failures and the saved repair costs.

Long-Term Changes in the Distal Aorta after Aortic Arch Replacement in Acute DeBakey Type I Aortic Dissection

  • Cho, Kwangjo;Jeong, Jeahwa;Park, Jongyoon;Yun, Sungsil;Woo, Jongsu
    • Journal of Chest Surgery
    • /
    • v.49 no.4
    • /
    • pp.264-272
    • /
    • 2016
  • Background: We analyzed the long-term results of ascending aortic replacement and arch aortic replacement in acute DeBakey type I aortic dissections to measure the differences in the distal aortic changes with extension of the aortic replacement. Methods: We reviewed 142 cases of acute DeBakey type I aortic dissections (1996-2015). Seventy percent of the cases were ascending aortic replacements, and 3 0% of the cases underwent total arch aortic replacement, which includes the aorta from the root to the beginning of the descending aorta with the 3 arch branches. Fourteen percent (20 cases) resulted in surgical mortality and 86% of cases that survived had a mean follow-up period of $6.6{\pm}4.6years$. Among these cases, 64% of the patients were followed up with computed tomography (CT) angiograms with the duration of the final CT check period of $4.9{\pm}2.9years$. Results: There were 15 cases of reoperation in 13 patients. Of these 15 cases, 13 cases were in the ascending aortic replacement group and 2 cases were in the total arch aortic replacement group. Late mortality occurred in 13 cases; 10 cases were in the ascending aortic replacement group and 3 cases were in the total arch aortic replacement group. Eight patients died of a distal aortic problem in the ascending aortic replacement group, and 1 patient died of distal aortic rupture in the total arch aortic replacement group. The follow-up CT angiogram showed that 69.8% of the ascending aortic replacement group and 35.7% of the total arch aortic replacement group developed distal aortic dilatation (p=0.0022). Conclusion: The total arch aortic replacement procedure developed fewer distal remnant aortic problems from dilatation than the ascending aortic replacement procedure in acute type I aortic dissections.

A Study on the Optimal Replacement Policy of the F16 Aircraft Engine Modules (F16 항공기 엔진모듈 최적교체정책에 관한 연구)

  • 김충영;강휘태
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.2
    • /
    • pp.43-56
    • /
    • 1998
  • This paper focuses on the optimal replacement time of engine modules of the F16 aircraft. Generally, the optimal replacement time of those should be determined to minimize the replacement cost due to out of order and opportunistic replacement cost of operation cost of remaining period. This paper determined the optimal replacement time by using the opportunistic replacement algorithm that is developed by Forbes and Wyatt. Some real data are utilized but a few data is estimated due to limitation of data. As a result, fan module only reaches to the opportunistic replacement time. The optimal replacement time of the fan module is derived as 1740 cycles. Therefore, the optimal replacement policy of engine modules of the F16 is that fan module should be replaced whenever it is out of order under 1740 cycles and whenever core module is out of order over 1740 cycles.

  • PDF

A Study of Optimal Maintenance Schedules of a System under the Periodic Inspection Policy (주기적인 검사 정책하에서 최적예방 교체시기 결정에 관한 연구)

  • 정현태;김제승
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.263-271
    • /
    • 1997
  • This paper presents a preventive maintenance model for determining the preventive replacement period of a system in which a failure rate is affected by the cumulative damage of fault and inspection. Especially, the failure rate function is considered to be a function of the cumulative damage of the fault and inspection time. Types of replacement considered are preventive replacement and failure replacement. Failure rate and expected cost function between replacement are derived. An optimal policy is obtained that minimizes the average cost per unit time for preventive replacement, failure replacement, inspection and repair.

  • PDF

Optimal replacement strategy under repair warranty with age-dependent minimal repair cost

  • Jung, K.M.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.117-122
    • /
    • 2011
  • In this paper, we suggest the optimal replacement policy following the expiration of repair warranty when the cost of minimal repair depends on the age of system. To do so, we first explain the replacement model under repair warranty. And then the optimal replacement policy following the expiration of repair warranty is discussed from the user's point of view. The criterion used to determine the optimality of the replacement model is the expected cost rate per unit time, which is obtained from the expected cycle length and the expected total cost for our replacement model. The numerical examples are given for illustrative purpose.

  • PDF

Age Replacement Policy for A System Considering Failure Characteristics of Components (부품(部品)의 고장특성(故障特性)를 고려한 시스템의 수명교환방침(壽命交換方針))

  • Jeong, Yeong-Bae
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.2
    • /
    • pp.109-120
    • /
    • 1993
  • Most systems are composed of components which have different failure chracteristics. Since the failure characteristics of components is different, it is rational and reasonable to establish a maintenance model to be considered repair and replacement policies which are proper to failure characteristics of these components. This paper proposes the age replacement time for a system composed of components which have different failure characteristics. In this model, it is assumed that a system is composed of a critical failure component, a major failure component, minor failure component. If any failure occurs to critical component before its age replacement time, the system should be replaced. If any failure does not occur until its age replacement time, preventive replacement should be performed at age replacement time T. Major component is minimal repaired if any failure occurs during operation. Minor component should be replaced as soon as failure is found. This paper determines the optimal replacement time of the system which minimize, total maintenance cost and initial stock Quantity of minor component within this optimal replacement time. Numerical example illustrates these results.

  • PDF

Some New Results on Uncertain Age Replacement Policy

  • Zhang, Chunxiao;Guo, Congrong
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • Age replacement policy is a commonly policy in maintenance management of spare part. It means that a spare part is always replaced at failure or fixed time after its installation, whichever occurs first. An optimal age replacement policy of spare parts concerns with finding the optimal replacement time determined by minimizing the expected cost per unit time. The age of the part was generally assumed to be a random variable in the past literatures, but in many situations, there are few or even no observed data to estimate the probability distribution of part's lifetime. In order to solve this phenomenon, a new uncertain age replacement policy has been proposed recently, in which the age of the part was assumed to be an uncertain variable. This paper discusses the optimal age replacement policies by dealing with the parts' lifetimes as different distributed uncertain variables. Several results on the optimal age replacement time are provided when the lifetimes are described by the uncertain linear, zigzag and lognormal distributions.

Cementing Efficiency of Fly-ash in Mortar Matrix According to Binder-Water Ratio and Fly-ash Replacement Ratio

  • Cho, Hong-Bum;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.194-202
    • /
    • 2012
  • This paper predicts the cementing efficiency of fly-ash(FA) based on mortar test considering binder-water ratio and FA replacement ratio as experimental variables. The cementing efficiency prediction model proposed by statistical analysis enables us to estimate the value according to the binder-water ratio and FA replacement ratio of matrix. When FA replacement ratio is the same, the lower the binder-water ratio, the higher the estimated cementing efficiency. There are significant differences in the values according to binder-water ratio at FA replacement ratios of 15% or less, but there are almost no differences when FA replacement ratio is more than 15%. As the binder-water ratio increases, the variations in the values according to FA replacement ratio are great at FA replacement ratios of 15% or less. As the FA replacement ratios increase, the values increase for FA replacement ratios of 15% or less, but decrease for more than 15%. The values range from -0.71 to 1.24 at binder-water ratio of 1.67-2.86 and FA replacement ratio of 0-70%. The RMSE of the 28-day compressive strength predicted by modified water-cement ratio is 2.2 MPa. The values can be trusted, as there is good agreement between predicted strength and experimental strength.

A Study of File Replacement Policy in Data Grid Environments (데이터 그리드 환경에서 파일 교체 정책 연구)

  • Park, Hong-Jin
    • The KIPS Transactions:PartA
    • /
    • v.13A no.6 s.103
    • /
    • pp.511-516
    • /
    • 2006
  • The data grid computing provides geographically distributed storage resources to solve computational problems with large-scale data. Unlike cache replacement policies in virtual memory or web-caching replacement, an optimal file replacement policy for data grids is the one of the important problems by the fact that file size is very large. The traditional file replacement policies such as LRU(Least Recently Used) LCB-K(Least Cost Beneficial based on K), EBR(Economic-based cache replacement), LVCT(Least Value-based on Caching Time) have the problem that they have to predict requests or need additional resources to file replacement. To solve theses problems, this paper propose SBR-k(Sized-based replacement-k) that replaces files based on file size. The results of the simulation show that the proposed policy performs better than traditional policies.