대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.165-170
/
1999
Previous technology of remote sensing was focused on analyzing raster image and gaining information through image processing. But now it has extended to diverse fields like automatic map generation, material exploitation or monitoring environmental changes with effort to utilizing practical usage. And with rapid expansion of information exchange on Internet and high-speed network, the demand of public which want to utilize remotely sensed image has been increased. This makes growth of service on acquisition and processing remotely sensed image. GeoNet is a Java-based remotely sensed image processing system. It is based on Java object-oriented paradigm and features cross-platform, web-based execution and extensibility to client/server remotely sensed image processing model. Remotely sensed image processing software made by Java programming language can suggest alternatives to meet readily demand on remotely sensed image processing in proportion to increase of remotely sensed data. In this paper, we introduce GeoNet and explain its architecture.
자바 언어를 이용하여 구축한 위성 영상 처리 소프트웨어인 GeoNet은 자바 언어의 장점을 그대로 수용하는 cross-platform 대용량 위성 영상처리 API로써의 인터페이스를 제공하며 개발 기간을 단축하는 자바 객체지향 패러다임의 기반에서 구축되었다. 네트워크 환경에서의 자바 확장성을 이용한 클라이언트/서버 이미지 처리의 적합성과 융통성 있는 시스템 구조로의 기반을 가지며 웹브라우저를 통한 실행도 GeoNet의 특징이다. 본 연구에서는 자바 언어를 통한 위성 영상 처리 소프트웨어 GeoNet의 개발을 통해 앞으로 확대될 위성 영상의 보급과 분산 환경에서의 영상 처리 요구에 신속히 대처할 수 있는 대안을 제시한다.
Using soft classification, it is possible to obtain the land cover proportions from the remotely sensed image. These land cover proportions are then used as input data for a procedure called "super-resolution mapping" to produce the predicted hard land cover layers at higher resolution than the original remotely sensed image. Superresolution mapping can be implemented using a number of algorithms in which the Hopfield Neural Network (HNN) has showed some advantages. The HNN has improved the land cover classification through superresolution mapping greatly with the high resolution data. However, the super-resolution mapping is based on the spatial dependence assumption, therefore it is predicted that the accuracy of resulted land cover classes depends on the relative size of spatial features and the spatial resolution of the remotely sensed image. This research is to evaluate the capability of HNN to implement the super-resolution mapping for SPOT image to create higher resolution land cover classes with different zoom factor.
Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.
최근 원격탐사영상을 이용한 서비스들(환경감시, GIS, 기상정보, 자원탐사 등)에 대한 연 구가 활발해짐에 따라, 원격탐사영상을 지정된 수신국에 등록하고, 처리하는 것이 아니라, 네트웍 을 이용해서 실시간정보를 서비스하거나, 다양한 전문지식을 가진 원격탐사영상 사용자 스스로 개별적인 원격탐사영상처리를 수행하는 것이 필요하게 되었다. 본 논문에서는 실시간에 원격탐사 영상처리를 할 수 있는시스템 구조를 제안하고, 기존의 시스템에서 처리하지 못했던 여러가지 문 제점들, 즉, 사용자가 직접 원격탐사영상을 처리할 수 없다는 점과 방대한 크기의 원격탐사영상으 로 인한 네트웍 트래픽의 낭비라는 측면을 고려하여, 현재 보편화된 인터넷을 이용하여 사용자와 수신국간의 대화식 통로를 만들고, Java 언어를 이용하여, 수신국의 영상을 효율적으로 처리할 수 있도록 사용자들이 빈번하게 사용하는 영상처리기법들을 구현하였으며, 수신국의 방대한 원격탐 사 영상을 효율적으로 관리하기 위해 객체관계형 데이타베이스 관리시스템을 이용해서 서비스를 구현하였다. 구현된 시스템은 LAN 환경에서 Netscape 웹브라우저와 IllustraDBMS를 이용하였으 며, 서비스 응답시간 측면에서 만족할 만한 성능을 보였다.
High-resolution remotely sensed data such as SPOT-5 imagery are employed to study the effectiveness of the watershed segmentation algorithm. Existing problems in this approach are identified and appropriate solutions are proposed. As a case study, the panchromatic SPOT-5 image of part of Beijing urban areas has been segmented by using the MATLAB software. In segmentation, the structuring element has been firstly created, then the gaps between objects have been exaggerated and the objects of interest are converted. After that, the intensity valleys have been detected and the watershed segmentation have been conducted. Through this process, the objects in an image are divided into separate objects. Finally, the effectiveness of the watershed segmentation approach for high-resolution imagery has been summarized. The approach to solve the problems such as over-segmentation has been proposed.
National Parks in Korea occupy about four percents of South Korean land. This paper aims to prove the potentiality of the application of remotely sensed data for the effective management of National Parks. Different satellite images such as Landsat TM, IRS-1C, Alternative image, and IKONOS image are analyzed for the detection of changes, the extraction of degraded areas, and the comparison of Normalized Difference Vegetation Index (NDVI) in Bukhansan National Park. The artificial structures such as buildings and paved areas are overvalued in relatively higher resolution data. The result showed that the choice of images should be determined according to specific purposes and the combination of different resolution data may be the solution for the effective management of National Park.
한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
/
pp.544-549
/
1999
The objective of this study is to identify the applicability of land cover image classified by remotely sensed data ; Landsat TM merged by SPOT for hydrological applications such as SCS runoff estimation . By comparing the calssified land cover image with the statistical data, it was proved that hey are agreed well with little errors. As a simple application , SCS runoff estimation was tested by varying rainfall intensity and AMC with Soilmap classfied by hydrologica soil map.
In this study, the digital image processing with image enhancement based on homomorphic filtering was performed using geophysical imaging data such as gravity, magnetic data and sub-scenes of satellite images such as LANDSAT, IKONOS, and KOMPSAT. Windows application program for executing homomorphic filtering was designed and newly implemented. In general, homomorphic filtering is technique that is based on Fourier transform, which enhances the contrast of image by removing the low frequencies and amplifying the high frequencies in frequency domain. We can enhance the image selectively using homomorphic filtering as compared with the existing method, which enhance the image totally. Through several experiment using remotely sensed imagery and geophysical image with this program, it is concluded that homomorphic filtering is more effective to reveal distinct characteristics for some complicated and multi-associated features on image data.
The land cover classification by using remotely sensed image becomes necessary and useful for hydrologic and water quality related applications. The purpose of this study is to obtain land classification map by using remotely sensed data : Landsat TM and KOMPSAT-1 EOC. The classification was conducted by maximum likelihood method with training set and Tasseled Cap Transform. The best result was obtain from the Landsat TM merged by KOMPSAT EOC, that is, similar with statistical data. This is caused by setting more precise training set with the enhanced spatial resolution by using KOMPSAT EOC(6.6m${\times}$6.6m).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.