• Title/Summary/Keyword: relative root mean squared error

Search Result 29, Processing Time 0.026 seconds

Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models (공간회귀모형을 이용한 대구경북 지역 단위면적당 아파트 매매가격 예측)

  • Lee, Woo Jung;Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.561-568
    • /
    • 2015
  • In this study we predict apartment prices per unit in Daegu-Gyeongbuk areas by spatial lag and spatial error models, both of which belong to so-called spatial regression model. A spatial weight matrix is constructed by k-nearest neighbours method and then the models for the apartment prices in March, 2012 are fitted using the weight matrix. The apartment prices in March, 2013 are predicted by the fitted spatial regression models and then performances of two spatial regression models are compared by RMSE (root mean squared error), RRMSE (root relative mean squared error), MAE (mean absolute error).

Study of Stochastic Techniques for Runoff Forecasting Accuracy in Gongju basin (추계학적 기법을 통한 공주지점 유출예측 연구)

  • Ahn, Jung Min;Hur, Young Teck;Hwang, Man Ha;Cheon, Geun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.21-27
    • /
    • 2011
  • When execute runoff forecasting, can not remove perfectly uncertainty of forecasting results. But, reduce uncertainty by various techniques analysis. This study applied various forecasting techniques for runoff prediction's accuracy elevation in Gongju basin. statics techniques is ESP, Period Average & Moving average, Exponential Smoothing, Winters, Auto regressive moving average process. Authoritativeness estimation with results of runoff forecasting by each techniques used MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), RRMSE (Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC (Theil Inequality Coefficient). Result that use MAE, RMSE, RRMSE, MAPE, TIC and confirm improvement effect of runoff forecasting, ESP techniques than the others displayed the best result.

Combined effect of glass and carbon fiber in asphalt concrete mix using computing techniques

  • Upadhya, Ankita;Thakur, M.S.;Sharma, Nitisha;Almohammed, Fadi H.;Sihag, Parveen
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.253-279
    • /
    • 2022
  • This study investigated and predicted the Marshall stability of glass-fiber asphalt mix, carbon-fiber asphalt mix and glass-carbon-fiber asphalt (hybrid) mix by using machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest(RF), The data was obtained from the experiments and the research articles. Assessment of results indicated that performance of the Artificial Neural Network (ANN) based model outperformed applied models in training and testing datasets with values of indices as; coefficient of correlation (CC) 0.8492 and 0.8234, mean absolute error (MAE) 2.0999 and 2.5408, root mean squared error (RMSE) 2.8541 and 3.3165, relative absolute error (RAE) 48.16% and 54.05%, relative squared error (RRSE) 53.14% and 57.39%, Willmott's index (WI) 0.7490 and 0.7011, Scattering index (SI) 0.4134 and 0.3702 and BIAS 0.3020 and 0.4300 for both training and testing stages respectively. The Taylor diagram also confirms that the ANN-based model outperforms the other models. Results of sensitivity analysis show that Carbon fiber has a major influence in predicting the Marshall stability. However, the carbon fiber (CF) followed by glass-carbon fiber (50GF:50CF) and the optimal combination CF + (50GF:50CF) are found to be most sensitive in predicting the Marshall stability of fibrous asphalt concrete.

Assessment of Frequency Analysis using Daily Rainfall Data of HadGEM3-RA Climate Model (HadGEM3-RA 기후모델 일강우자료를 이용한 빈도해석 성능 평가)

  • Kim, Sunghun;Kim, Hanbeen;Jung, Younghun;Heo, Jun-Haeng
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.51-60
    • /
    • 2019
  • In this study, we performed At-site Frequency Analysis(AFA) and Regional Frequency Analysis(RFA) using the observed and climate change scenario data, and the relative root mean squared error(RMMSE) was compared and analyzed for both approaches through Monte Carlo simulation. To evaluate the rainfall quantile, the daily rainfall data were extracted for 615 points in Korea from HadGEM3-RA(12.5km) climate model data, one of the RCM(Regional Climate Model) data provided by the Korea Meteorological Administration(KMA). Quantile mapping(QM) and inverse distance squared methods(IDSM) were applied for bias correction and spatial disaggregation. As a result, it is shown that the RFA estimates more accurate rainfall quantile than AFA, and it is expected that the RFA could be reasonable when estimating the rainfall quantile based on climate change scenarios.

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya;M. S. Thakur;Nitisha Sharma;Fadi H. Almohammed;Parveen Sihag
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.

Development of a Transfer Function Model to Forecast Ground-level Ozone Concentration in Seoul (서울지역의 지표오존농도 예보를 위한 전이함수모델 개발)

  • 김유근;손건태;문윤섭;오인보
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.779-789
    • /
    • 1999
  • To support daily ground-level $O_3$ forecasting in Seoul, a transfer function model(TFM) has been developed by using surface meteorological data and pollutant data(previous-day [$O_3$] and [$NO_2$]) from 1 May to 31 August in 1997. The forecast performance of the TFM was evaluated by statistical comparison with $O_3$ concentration observed during September it is shown that correlation coefficient(R), root mean squared error(RMSE), normalized mean squared error(NMSE) and mean relative error(MRE) were 0.73, 15.64, 0.006 and 0.101, respectively. The TFM appeared to have some difficulty forecasting very high $O_3$ concentrations. To compare with this model, multiple regression model(MRM) was developed for the same period. According to statistical comparison between the TFM and MRM. two models had similar predictive capability but TFM based on $O_3$ concentration higher than 60 ppb provided more accurate forecast than MRM. It was concluded that statistical model based on TFM can be useful for improving the accuracy of local $O_3$ forecast.

  • PDF

The Relative Height Error Analysis of Digital Elevation Model on South Korea to Determine the TargetVertical Accuracy of CAS500-4 (농림위성의 목표 수직기하 정확도 결정을 위한 남한 지역 수치표고모델 상대 오차 분석)

  • Baek, Won-Kyung;Yu, Jin-Woo;Yoon, Young-Woong;Jung, Hyung-Sup;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1043-1059
    • /
    • 2021
  • Forest and agricultural land are very important factors in the environmental ecosystem and securing food resources. Forest and agricultural land should be monitored regularly. CAS500-4 data are expected to be effectively used as a supplement of monitoring forest and agricultural land. Prior to the launch of the CAS500-4, the relative canopy height error analysis of the digital elevation model on South Korea was performed to determine the vertical target accuracy. Especially, by considering area of interest of the CAS500-4 (mountainous or agricultural area), it is conducted that vertical error analysis according to the slope and canopy. For Gongju, Jeju, and Samcheok, the average root mean squared differences were calculated compared to the drone LiDAR digitalsurface models, which were filmed in autumn and winter and the 5 m digital elevation model from the National Geographic Information Institute. As a result, the Shuttle radar topography mission digital elevation model showed a root mean squared differences of about 8.35, 8.19, and 7.49 m, respectively, while the Copernicus digital elevation model showed a root mean squared differences of about 5.65, 6.73, and 7.39 m, respectively. In addition, the root mean squared difference of shuttle radar topography mission digital elevation model and the Copernicus digital elevation model according to the slope angle were estimated on South Korea compared to the 5 m digital elevation model from the National Geographic Information Institute. At the slope angle of between 0° to 5°, root mean squared differences of the Shuttle radar topography mission digital elevation model and the Copernicus digital elevation model showed 3.62 and 2.52 m, respectively. On the other hands root mean squared differences of the Shuttle radar topography mission digital elevation model and the Copernicus digital elevation model respectively showed about 10.16 and 11.62 m at the slope angle of 35° or higher.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

Simulation and Model Validation of a Pneumatic Conveying Drying for Wood Dust Particles

  • Bhattarai, Sujala;Kim, Dae-Hyun;Oh, Jae-Heun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.82-89
    • /
    • 2012
  • Purpose: The simulation model of a pneumatic conveying drying (PCD) for sawdust was developed and verified with the experiments. Method: The thermal behavior and mass transfer of a PCD were modeled and investigated by comparing the experimental results given by a reference (Kamei et al. 1952) to validate the model. Momentum, energy and mass balance, one dimensional first order ordinary differential equations, were coded and solved into Matlab V. 7.1.0 (2009). Results: The simulation results showed that the moisture content reduced from 194% to 40% (dry basis), air temperature decreased from $512^{\circ}C$ to $128^{\circ}C$ with the particle residence time of 0.7 seconds. The statistical indicators, root mean square error and R-squared, were calculated to be 0.079, and 0.998, respectively, between the measured and predicted values of moisture content. The relative error between the measured and predicted values of the final pressured drop, air temperature, and air velocity were only 8.96%, 0.39% and 1.05% respectively. Conclusions: The predicted moisture content, final temperature, and pressure drop values were in good agreement with the experimental results. The developed model can be used for design and estimation of PCD system for drying of wood dust particles.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.