References
- Bajcinovci, B. (2017), "Achieving thermal comfort and sustainable urban development in accordance with the principles of bioclimatic architecture: A case study of Ulcinj (Montenegro)", Quaestiones Geographicae, 40(3), 131-140. https://doi.org/10.1515/quageo-2017-0041
- Bataineh, A.A. and Kaur, D. (2018), "A comparative study of different curve fitting algorithms in artificial neural network using housing dataset", Proceedings of the NAECON2018-IEEE National Aerospace and Electronics Conference, Ohio, U.S.A., July.
- Candanedo, L.M., Feldheim, V. and Deramaix, D. (2017), "Data driven prediction models of energy use of appliances in alow-energy house", Energy Build., 140, 81-97. https://doi.org/10.1016/j.enbuild.2017.01.083.
- Dong, B., Cao, C. and Lee, S.E. (2006), "Applying support vector machines to predict building energy consumption in tropical region", Energy Build., 37(5), 545-553. https://doi.org/10.1016/j.enbuild.2004.09.009.
- Elith, J., Leathwick, J.R. and Hastie, T. (2008), "A working guide to boosted regression trees", J. Animal Ecol., 77(4), 802-813. https://doi.org/10.1111/j.1365-2656.2008.01390.x.
- Ferreira, P.M., Ruano, A.E., Pestana, R. and Koczy, L.T. (2009), "Evolving RBF predictive models to forecast the Portuguese electricity consumption", IFAC Proc. Vol., 42(19), 414-419. https://doi.org/10.3182/20090921-3-TR-3005.00073.
- Foucquier, A., Robert, S., Suard, F. and Stephan, L. (2013), "State of the art in building modelling and energy performances prediction: A review", Renew. Sust. Energy Rev., 23, 272-288. https://doi.org/10.1016/j.rser.2013.03.004.
- Hua, Y., Oliphant, M. and Hu, E.J. (2016), "Development of renewable energy in Australia and China: A comparison of policies and status", Renew. Energy, 85, 1044-1051. https://doi.org/10.1016/j.renene.2015.07.060.
- Jung, H. C., Kim, J.S. and Heo, H. (2015), "Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach", Energy Build., 90, 76-84. https://doi.org/10.1016/j.enbuild.2014.12.029.
- Karatasou, S., Santamouris, M. and Geros, V. (2006), "Modeling and predicting building's energy use with artificial neural networks: Methods and results", Energy Build., 38(8), 949-958. https://doi.org/10.1016/j.enbuild.2005.11.005.
- Keneni, B.M., Kaur, D., Bataineh, A.A., Devabhaktuni, V.K., Javaid, A.Y., Zaientz, J.D. and Marinier, R.P. (2019), "Evolving rule-based explainable artificial intelligence for unmanned aerial vehicles", IEEE Access, 7, 17001-17016. https://doi.org/10.1109/ACCESS.2019.2893141.
- Khosravani, H.R., Castilla, M.D., Berenguel, M., Ruano, A.E. and Ferreira, P.M. (2016), "A comparison of energy consumption prediction models based on neural networks of a bioclimatic building", Energies, 9(1), 57. https://doi.org/10.3390/en9010057.
- Li, K., Su, H. and Chu, J. (2011), "Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study", Energy Build., 43(10), 2893-2899. https://doi.org/10.1016/j.enbuild.2011.07.010.
- Neto, A.H. and Fiorelli, F.A. (2008), "Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption", Energy Build., 40(12), 2169-2176. https://doi.org/10.1016/j.enbuild.2008.06.013.
- Panwar, N.L., Kaushik, S.C. and Kothari, S. (2011), "Role of renewable energy sources in environmental protection: A review", Renew. Sust. Energy Rev., 15(3), 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037.
- Perez-Lombard, L., Ortiz, J. and Pout, C. (2008), "A review on buildings energy consumption information", Energy Build., 40(3), 394-398. https://doi.org/10.1016/j.enbuild.2007.03.007.
- Scarlat, N., Dallemand, J.F., Monforti-Ferrario, F., Banja, M. and Motola, V. (2015), "Renewable energy policy framework and bioenergy contribution in the European Union-An overview from National Renewable Energy Action Plans and Progress Reports", Renew. Sust. Energy Rev., 51, 969-985. https://doi.org/10.1016/j.rser.2015.06.062.
- Tzikopoulos, A., Karatza, M.C. and Paravantis, J. (2005), "Modeling energy efficiency of bioclimatic buildings", Energy Build., 37(5), 529-554. https://doi.org/10.1016/j.enbuild.2004.09.002.
- Zhou, Z.H. (2012), Ensemble Methods.
- Zhu, C., Chen, W., Zhu, Z.A., Wang, G., Wang, D. and Chen, Z. (2009), "A general magnitude-preserving boosting algorithm for search ranking", Proceedings of the 18th ACM Conference on Information and Knowledge Management-CIKM 09, Hong Kong, China, November.