Abstract
To support daily ground-level $O_3$ forecasting in Seoul, a transfer function model(TFM) has been developed by using surface meteorological data and pollutant data(previous-day [$O_3$] and [$NO_2$]) from 1 May to 31 August in 1997. The forecast performance of the TFM was evaluated by statistical comparison with $O_3$ concentration observed during September it is shown that correlation coefficient(R), root mean squared error(RMSE), normalized mean squared error(NMSE) and mean relative error(MRE) were 0.73, 15.64, 0.006 and 0.101, respectively. The TFM appeared to have some difficulty forecasting very high $O_3$ concentrations. To compare with this model, multiple regression model(MRM) was developed for the same period. According to statistical comparison between the TFM and MRM. two models had similar predictive capability but TFM based on $O_3$ concentration higher than 60 ppb provided more accurate forecast than MRM. It was concluded that statistical model based on TFM can be useful for improving the accuracy of local $O_3$ forecast.