• Title/Summary/Keyword: relative motion control

Search Result 155, Processing Time 0.023 seconds

Station Collocation of Geostationary Spacecraft Via Direct Control of Relative Position (상대위치 직접 제어를 통한 정지궤도 위성의 Collocation에 관한 연구)

  • Lee, Jae-Gyu;No, Tae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.56-64
    • /
    • 2006
  • Station collocation of closely placed multiple GEO spacecraft is required to avoid the problem of collision risk, attitude sensor interference and/or occultation. This paper presents the method of obtaining the orbit correction scheme for collocating two GEO spacecraft within a small station-keeping box. The relative motion of each spacecraft with respect to the virtual geostationary satellite is precisely expressed in terms of power and trigonometry functions. This closed-form orbit propagator is used to define the constraint conditions which meet the requirements for the station collocation. Finally, the technique of constrained optimization is used to find the orbit maneuver sequence. Nonlinear simulations are performed and their results are compared with those of the classical method.

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.

Control of Inertially Stabilized Platform Using Disturbance Torque Estimation and Compensation (외란토크 추정 및 보상을 이용한 관성안정화 플랫폼의 제어)

  • Choi, Kyungjun;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this study, we propose a control algorithm for Inertially Stabilized Platforms (ISP), which combines Disturbance Observer (DOB) with conventional proportional integral derivative (PID) control algorithm. A single axis ISP system was constructed using a direct drive motor. The joint friction was modeled as a nonlinear function of joint speed while the accuracy of the model was verified through experiments and simulation. In addition, various Q-filters, which have different orders and relative degrees of freedom (DOF), were implemented. The stability and performance of the ISP were compared through experimental study. The performance of the proposed PID-plus-DOB algorithm was compared with the experimental results of the conventional double loop PID control under artificial vehicle motion provided motion simulator with six DOF.

Guidance and Control System Design for Automatic Carrier Landing of a UAV (무인 항공기의 함상 자동 착륙을 위한 유도제어 시스템 설계)

  • Koo, Soyeon;Lee, Dongwoo;Kim, Kijoon;Ra, Chung-Gil;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1085-1091
    • /
    • 2014
  • This paper presents the guidance and control design for automatic carrier landing of a UAV (Unmanned Aerial Vehicle). Differently from automatic landing on a runway on the ground, the motion of a carrier deck is not fixed and affected by external factors such as ship movement and sea state. For this reason, robust guidance/control law is required for safe shipboard landing by taking the relative geometry between the UAV and the carrier deck into account. In this work, linear quadratic optimal controller and longitudinal/lateral trajectory tracking guidance algorithm are developed based on a linear UAV model. The feasibility of the proposed control scheme and guidance law for the carrier landing are verified via numerical simulations using X-Plane and Matlab/simulink.

A Study on the Controller Design of the Flight Control System Using MRAC Methods (MRAC 방식을 이용한 비행체 조종장치의 제어기 설계에 관한 연구)

  • Byung-Chul Kwak;Hai-Won Yang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.171-179
    • /
    • 1988
  • This paper deals with the controller design of the flight control system using the model reference adaptive control approach. The structure of the adaptive control system is based on the structure suggested by NARENDRA and VALAVANI. In particular, the problem is considered in case of the relative degree n=2 of plant. The flight control system is single-input single-output system, and the control input is given from the input-output data of the referencemodel and plant. For the analysis of the designed control system, thesimulation is perfarmed in cases of analog plant and analog plant with flight motion table, and reviewed.

Fast Computation of the Visibility Region Using the Spherical Projection Method

  • Chu, Gil-Whoan;Chung, Myung-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.92-99
    • /
    • 2002
  • To obtain visual information of a target object, a camera should be placed within the visibility region. As the visibility region is dependent on the relative position of the target object and the surrounding object, the position change of the surrounding object during a task requires recalculation of the visibility region. For a fast computation of the visibility region so as to modify the camera position to be located within the visibility region, we propose a spherical projection method. After being projected onto the sphere the visibility region is represented in $\theta$-$\psi$ spaces of the spherical coordinates. The reduction of calculation space enables a fast modification of the camera location according to the motion of the surrounding objects so that the continuous observation of the target object during the task is possible.

A Handheld 3-Dimensional Motion Tracking Device for Ubiquitous Computing Environment (유비쿼터스 환경에서 사용 가능한 핸드 헬드형 3차원 움직임 추적장치)

  • Park, Myung-Kwan;Lee, Sang-Hoon;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1045-1050
    • /
    • 2005
  • This paper describes a design experience of a low-cost 6 DOF spatial tracker system where relative low accuracy and relatively long ranges, wireless communication will be achieved by means of low cost accelerometers and gyros with contemporary microprocessor. However, there are two key problems; one is the bias drift problem and the other is that single or double integration of acceleration signal suffers not only from noise but also from nonlinear effects caused by gravity. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Several experimental results are shown to validate our proposed algorithms.

Computation of Gradient of Manipulability for Kinematically Redundant Manipulators Including Dual Manipulators System

  • Park, Jonghoon;Wangkyun Chung;Youngil Youm
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.8-15
    • /
    • 1999
  • One of the main reason advocating redundant manipulators' superiority in application is that they can afford to optimize a dexterity measure, for example the manipulability measure. However, to obtain the gradient of the manipulability is not an easy task in case of general manipulator with high degrees of redundancy. This article proposes a method to compute the gradient of the manipulability, based on recursive algorithm to compute the Jacobian and its derivative using Denavit-Hartenberg parameters only. To characterize the null motion of redundant manipulators, the null space matrix using square minors of the Jacobian is also proposed. With these capabilities, the inverse kinematics of a redundant manipulator system can be done automatically. The result is easily extended to dual manipulator system using the relative kinematics.

  • PDF

2D Finite Element Analysis of Double-side LPM (양측식 리니어 펄스 모터의 2차원 유한요소해석)

  • Lee, Dong-Ju;Lee, Eun-Woong;Kim, Sung-Hun;Kim, Il-Jung;Kim, Sung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.760-762
    • /
    • 2000
  • Hybrid type LPM can be widely applied in the precise position controlled devic because precise linear motion can be directly obtained by the simple control circuit without backlash in the rotary-type stepping motor. Also, LPM can increase the Position resolution, which was limited by mechanical manufacturing limit and characteristic of magnetic material. using micro-step drive method to decrease the noise and vibration further. Especially, Double-side LPM may be replaced the solenoid as the valve driving device without difficulty and give full play to control the valve accurately. Hence, In this paper, magnetic circuit of double-side LPM was confirmed and static thrust force curve according to the relative displacement between stator and mover, was analyzed by the two dimensional finite element method. From this results, we can suppose the excitation current to be controlled optimally.

  • PDF

Design of a Robust Adaptive Control Scheme for Longitudinal Motion of Vehicles (직진 주행 차량의 강인 적응제어 구조설계)

  • Kim, Dong-Hun;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.31-37
    • /
    • 2001
  • A robust adaptive technique for the longitudinal control of a platoon of automated vehicles is presented. A nonlinear model is used to represent the dynamics of each vehicle within the platoon. The external disturbances such as wind gust and a disturbance term due to engine transmission variations and so on are considered. The state observer is used to avoid direct measurement of the relative velocity or acceleration between the controlled and leading vehicles or the controlled vehicles's acceleration. The proposed controller guarantees to recover platoon stability in operation even if a speed dependent spacing policy is adopted, which incorporates a constant time headway in addition to the constant distance. It is shown that the proposed observer is exponentially stable, and the at the robust adaptive controller is stable. The simulation results demonstrate excellent tracking even in the presence of disturbances.

  • PDF