• Title/Summary/Keyword: relative angle

Search Result 806, Processing Time 0.025 seconds

Comparative Analysis of Image Fusion Methods According to Spectral Responses of High-Resolution Optical Sensors (고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석)

  • Lee, Ha-Seong;Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This study aims to evaluate performance of various image fusion methods based on the spectral responses of high-resolution optical satellite sensors such as KOMPSAT-2, QuickBird and WorldView-2. The image fusion methods used in this study are GIHS, GIHSA, GS1 and AIHS. A quality evaluation of each image fusion method was performed with both quantitative and visual analysis. The quantitative analysis was carried out using spectral angle mapper index (SAM), relative global dimensional error (spectral ERGAS) and image quality index (Q4). The results indicates that the GIHSA method is slightly better than other methods for KOMPSAT-2 images. On the other hand, the GS1 method is suitable for Quickbird and WorldView-2 images.

Study on the Preferred Orientation Using White Neutron

  • Lee, Yun-Peel
    • Nuclear Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.219-230
    • /
    • 1974
  • The previous expression for the diffracted neutron intensity by a highly oriented polycrystalline is modified using the Kunitomi's formula of the crystal reflectivity The method of studying the preferred orientation in metals with white neutron is proposed utilizing the above formula and the fact that the real position of the diffraction of certain grain in the sample can be found by the comparison of the smaller angle part of the maxwellian curve of the calculated intensity of neutrons diffracted and the experimenal curves. The most probable wavelength of thermal neutrons from the reactor is found by the measurement of the neutron spectrum with the correction for the crystal about the multiple reflection and the absorption of neutrons and turned out to be 1.025 $\pm$ 0.001$\AA$. The preferred orientations of some electric steel sheets, mostly with the cube-on-face orientations, are investigated by the present method. The orientations of most grains relative to the rolling directions are found to be within 5 degrees. It is found the most of theories for large crystals may be extended to highly oriented polycrystalline materials without extensive modification.

  • PDF

A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems (파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

Physical and Chemical Properties of Kapok (Ceiba pentandra) and Balsa (Ochroma pyramidale) Fibers

  • Purnawati, Renny;Febrianto, Fauzi;Wistara, I Nyoman J;Nikmatin, Siti;Hidayat, Wahyu;Lee, Seung Hwan;Kim, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.393-401
    • /
    • 2018
  • Natural fibers derived from lignocellulosic materials are considered to be more environment-friendly than petroleum-based synthetic fibers. Several natural fibers, such as seedpod fibers, have a potential for development, including kapok and balsa fibers. The characteristics of both fibers were evaluated to determine their suitability for specific valuable applications. The purpose of this study was to analyze some important fundamental properties of kapok and balsa fibers, including their dimensions, morphology, chemical components, and wettability. The results showed that the average fiber lengths for kapok and balsa were 1.63 and 1.30 cm, respectively. Kapok and balsa fibers had thin cell walls and large lumens filled with air. The kapok fiber was composed of 38.09% ${\alpha}-cellulose$, 14.09% lignin, and 2.34% wax content, whereas the balsa fiber was composed 44.62% ${\alpha}-cellulose$, 16.60% lignin, and 2.29% wax content. The characteristics of kapok and balsa fibers were examined by X-ray diffraction, Fourier-transform infrared spectroscopy and differential scanning calorimetry analyses. The contact angle of the distilled water on kapok and balsa fibers was more than $90^{\circ}$, indicating that both fibers are hydrophobic with low wettability properties because of to the presence of wax on the fiber surface.

Color Filter Utilizing a Thin Film Etalon (박막형 에탈론 기반의 투과형 컬러필터)

  • Yoon, Yeo-Taek;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.175-178
    • /
    • 2010
  • A transmission type color filter based on a thin film Ag-$SiO_2$-Ag etalon was proposed and realized in a quartz substrate. The device could acquire infrared suppressed transmission and wide effective area compared to costly e-beam lithography and laser interference lithography. The FDTD method was introduced to take into account the effect of the dispersion characteristics of the silver metal and the thickness thereof. Three different color filters were devised: The cavity length for the red, green and blue filters were 160 nm, 130 nm, and 100 nm respectively, with the metal layer unchanged at 25 nm. The observed center wavelengths were measured at 650 nm, 555 nm, and 480 nm for the red, green, and blue devices; the corresponding bandwidths were about 120 nm, 100 nm, and 120 nm; and the peak transmission for all was ~60%. Finally the relative transmission was measured to decline with the angle of the incident beam with the rate of 1%/degree.

Direction-of-Arrival Estimation in Broadband Signal Processing : Rotation of Signal Subspace Approach (광대역 신호 처리에서의 도래각 추정 : Rotation of Signal Subspaces 방법)

  • Kim, Young-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.166-175
    • /
    • 1989
  • In this paper, we present a method which is based on the concept of the rotation of subspaces. This method is highly related to the angle (or distance) between subspaces arising in many applications. An effective procedures is first derived for finding the optimal transformation matrix which rotates one subspace into another as closely as possible in the least squares sense , and then this algorithm is applied to the solution to general direction-of-arrival estimation problem of multiple broadband plane waves which may be a mixture of incoherent, partially coherent or coherent. In this typical application, the rotation of signal subspaces (ROSS) algorithm is effectively developed to achieve the high performance in the active systems for the case in which the noise field remains invariant with the measurement of the array spectral density matrix (or data matrix). It is not uncommon to observe this situation in sonar systems. The advantage of this techniques is not to require the preliminary processing and spatial prefiltering which is used in Wang-Kaveh's CSS focusing method. Furthermore, the array's geometry is not restricted. Simulation results are presented to illustrate the high performance achieved with this new approach relative to that obtained with Wang-Kaveh's CSS focusing method for incoherent sources and forward-backward spatial smoothed MUSIC for coherent sources including the signal eigenvector method (SEM).

  • PDF

Computational design of mould sprue for injection moulding thermoplastics

  • Lakkannan, Muralidhar;Mohan Kumar, G.C.;Kadoli, Ravikiran
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.37-52
    • /
    • 2016
  • To injection mould polymers, designing mould is a key task involving several critical decisions with direct implications to yield quality, productivity and frugality. One prominent decision among them is specifying sprue-bush conduit expansion as it significantly influences overall injection moulding; abstruseness anguish in its design criteria deceives direct determination. Intuitively designers decide it wisely and then exasperate by optimising or manipulating processing parameters. To overwhelm that anomaly this research aims at proposing an ideal design criteria holistically for all polymeric materials also tend as a functional assessment metric towards perfection i.e., criteria to specify sprue conduit size before mould development. Accordingly, a priori analytical criterion was deduced quantitatively as expansion ratio from ubiquitous empirical relationships specifically a.k.a an exclusive expansion angle imperatively configured for injectant properties. Its computational intelligence advantage was leveraged to augment functionality of perfectly injecting into an impression gap, while synchronising both injector capacity and desired moulding features. For comprehensiveness, it was continuously sensitised over infinite scale as an explicit factor dependent on in-situ spatio-temporal injectant state perplexity with discrete slope and altitude for each polymeric character. In which congregant ranges of apparent viscosity and shear thinning index were conceived to characteristically assort most thermoplastics. Thereon results accorded aggressive conduit expansion widening for viscous incrust, while a very aggressive narrowing for shear thinning encrust; among them apparent viscosity had relative dominance. This important rationale would certainly form a priori design basis as well diagnose filling issues causing several defects. Like this the proposed generic design criteria, being simple would immensely benefit mould designers besides serve as an inexpensive preventive cliché to moulders. Its adaption ease to practice manifests a hope of injection moulding extremely alluring polymers. Therefore, we concluded that appreciating injectant's polymeric character to design exclusive sprue bush offers a definite a priori advantage.

A Study of Wind Pressure Distribution for a Rectangular Building Using CFD (CFD를 이용한 박스형 건물의 풍압분포 분석에 관한 연구)

  • Shin, Dongshin;Park, Jaehyun;Kang, Bomi;Kim, Eunmi;Lim, Hyeongjun;Lee, Jinyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • This paper studies the wind pressure distribution over the Commonwealth Advisory Aeronautical Council building model (CAARC model) using CFD. We also considered the interaction between the CAARC model and other buildings. The Reynolds number based on the building height was 380,000. The number of sells for the simulation was about 500,000. The wind pressure was lowest when the wind direction was blowing at an angle 45 degrees of the CAARC model. When the gap between the two buildings in front of the CAARC was over 1/2 the horizontal length of the CAARC model, the wind pressure was higher than the pressure without the two buildings. When the distance between the two front buildings and the CAARC was less than 1.5 times the vertical length of the CAARC model, the wind pressure increased. Accordingly, the relative distance between two buildings or the distance from the CAARC model should be considered when extra wind exists due to other buildings.

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part III) -Shear Deformation Characteristics- (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(III) -전단변형 특성-)

  • 박춘식;황성춘;장정욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.95-105
    • /
    • 2000
  • Anisotropy of stiffiness, from extremely small strains to post-failure strains, of isotropically consolidated air-pulviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain relationships for a wide range of strain from about 0.0001% to 10% were obtained with measuring axial and lateral strains locally free from the effects of bedding and membrane penetration errors at the specimen boundaries. It was found that the maximum shear modulus Gmax was irrespective of the angle $\delta$of the $\sigma$1 direction relative to the bedding plane. However, the normalized Gmax was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness increased as decreased.

  • PDF

Initial bacterial adhesion on resin, titanium and zirconia in vitro

  • Lee, Byung-Chul;Jung, Gil-Yong;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.81-84
    • /
    • 2011
  • PURPOSE. The aim of this in vitro study was to investigate the adhesion of initial colonizer, Streptococcus sanguis, on resin, titanium and zirconia under the same surface polishing condition. MATERIALS AND METHODS. Specimens were prepared from Z-250, cp-Ti and 3Y-TZP and polished with $1 {\mu}m$ diamond paste. After coating with saliva, each specimen was incubated with Streptococcus sanguis. Scanning electron microscope, crystal violet staining and measurement of fluorescence intensity resulting from resazurin reduction were performed for quantifying the bacterial adhesion. RESULTS. Surface of resin composite was significantly rougher than that of titanium and zirconia, although all tested specimens are classified as smooth. The resin specimens showed lower value of contact angle compared with titanium and zirconia specimens, and had hydrophilic surfaces. The result of scanning electron microscopy demonstrated that bound bacteria were more abundant on resin in comparison with titanium and zirconia. When total biofilm mass determined by crystal violet, absorbance value of resin was significantly higher than that of titanium or zirconia. The result of relative fluorescence intensities also demonstrated that the highest fluorescence intensity was found on the surface of resin. Absorbance value and fluorescence intensity on titanium was not significantly different from those on zirconia. CONCLUSION. Resin specimens showed the roughest surface and have a significantly higher susceptibility to adhere Streptococcus sanguis than titanium and zirconia when surfaces of each specimen were polished under same condition. There was no significant difference in bacteria adhesion between titanium and zirconia in vitro.