DOI QR코드

DOI QR Code

Computational design of mould sprue for injection moulding thermoplastics

  • Lakkannan, Muralidhar (Department of Mechanical Engineering, National Institute of Technology Karnataka) ;
  • Mohan Kumar, G.C. (Department of Mechanical Engineering, National Institute of Technology Karnataka) ;
  • Kadoli, Ravikiran (Department of Mechanical Engineering, National Institute of Technology Karnataka)
  • Received : 2014.12.10
  • Accepted : 2015.06.04
  • Published : 2016.01.01

Abstract

To injection mould polymers, designing mould is a key task involving several critical decisions with direct implications to yield quality, productivity and frugality. One prominent decision among them is specifying sprue-bush conduit expansion as it significantly influences overall injection moulding; abstruseness anguish in its design criteria deceives direct determination. Intuitively designers decide it wisely and then exasperate by optimising or manipulating processing parameters. To overwhelm that anomaly this research aims at proposing an ideal design criteria holistically for all polymeric materials also tend as a functional assessment metric towards perfection i.e., criteria to specify sprue conduit size before mould development. Accordingly, a priori analytical criterion was deduced quantitatively as expansion ratio from ubiquitous empirical relationships specifically a.k.a an exclusive expansion angle imperatively configured for injectant properties. Its computational intelligence advantage was leveraged to augment functionality of perfectly injecting into an impression gap, while synchronising both injector capacity and desired moulding features. For comprehensiveness, it was continuously sensitised over infinite scale as an explicit factor dependent on in-situ spatio-temporal injectant state perplexity with discrete slope and altitude for each polymeric character. In which congregant ranges of apparent viscosity and shear thinning index were conceived to characteristically assort most thermoplastics. Thereon results accorded aggressive conduit expansion widening for viscous incrust, while a very aggressive narrowing for shear thinning encrust; among them apparent viscosity had relative dominance. This important rationale would certainly form a priori design basis as well diagnose filling issues causing several defects. Like this the proposed generic design criteria, being simple would immensely benefit mould designers besides serve as an inexpensive preventive cliché to moulders. Its adaption ease to practice manifests a hope of injection moulding extremely alluring polymers. Therefore, we concluded that appreciating injectant's polymeric character to design exclusive sprue bush offers a definite a priori advantage.

Keywords

References

  1. J., Aho, Rheological Characterisation of Polymer Melts in Shear and Extension: Measurement Reliability and Data for Practical Processing, Tampere, 2011.
  2. Bagley EB, Schreiber HP. Effect of die entry geometry on polymer melt fracture and extrudate distortion. J. Rheol. 1961;5(1)341-53. https://doi.org/10.1122/1.548904
  3. Baldi F, Franceschini A, Bignotti F. On the measurement of the high rate flow properties of organo-clay platelet filled polyamide 6 melts by capillary rheometer. Polym. Test. 2011;30(7)765-72. https://doi.org/10.1016/j.polymertesting.2011.07.002
  4. Barnes HA, Hutton JE, Walters K. An introduction to rheology 3 Impression. In: Amsterdam, editor. Elsevier Science Publishers; 1989.
  5. Belofsky H. Plastics: Product Design and Process Engineering. Munich: Carl Hanser Publishers; 1995.
  6. Bikas A, Pantelelis N, Kanarachos A. Computational tools for the optimal design of the injection moulding process. J. Mater. Process. Technol. 2002;122(26)112-26. https://doi.org/10.1016/S0924-0136(01)01248-1
  7. Bociaga E, Jaruga T. Experimental investigation of polymer flow in injection mould. Arch. Mater. Sci. Eng. 2007;28(3)165-72.
  8. Boger DV. Demonstration of upper and lower Newtonian fluid behaviour in a pseudoplastic fluid. Nature 1977;265:126-8. https://doi.org/10.1038/265126a0
  9. S.C.W., Bollin, The effect of injection moulding conditions on the near surface rubber morphology, surface chemistry and adhesion performance of semi crystalline and amorphous polymers, Detroit, Michigan, USA, 2010.
  10. Bolur PC. A guide of injection moulding of plastics. India: Allied Publishers Ltd.; 2000.
  11. Boronat T, Segui VJ, Peydro MA, Reig MJ. Influence of temperature and shear rate on the rheology and processability of reprocessed ABS in injection moulding process. J. Mater. Process. Technol. 2009;209(5) 2735-45. https://doi.org/10.1016/j.jmatprotec.2008.06.013
  12. Campo EA. The Complete Part Design Handbook for Thermoplastic Injection Moulding. Munchen, Germany: Carl Hanser Verlag; 2006.
  13. Cao W, Shen C, Zhang C, Wang L. Computing flow-induced stresses of injection molding based on the Phan-Thien-Tanner model. Arch. Appl. Mech. 2008;78:363-77. https://doi.org/10.1007/s00419-007-0167-4
  14. Chhabra RP, Richardson JF. Non-Newtonian Flow and Applied Rheology. MA, USA: Butterworth Heinemann; 2008.
  15. Crawford RJ. Rubber and Plastic Engineering Design and Application. USA: Applied Publisher Ltd; 1987.
  16. Dym JB. Injection Moulds & Moulding: A Practical Manual, 2nd ed., New York, USA: Von Nostrand Reinhold; 1987.
  17. Echevarria GG, Eguiazabal JI, Nazabal J. Influence of the preparation method on the mechanical properties of a thermotropic liquid crystalline copolyester. Polym. Test. 2001;20(4)403-8. https://doi.org/10.1016/S0142-9418(00)00050-7
  18. Eder G, Janeschitz-Kriegl H, Liedauer S. Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Prog. Polym. Sci. 1990;15:629-714. https://doi.org/10.1016/0079-6700(90)90008-O
  19. Evans JG, Hunt KN. A heated sprue bush for ceramic injection moulding. J. Mater. Sci. Lett. 1991;10:730-3. https://doi.org/10.1007/BF00722783
  20. Ferreira I, de Weck O, Saraiva P, Cabral J. Multidisciplinary optimisation of injection moulding systems. Struct. Multidiscip. Optim. 2010;41: 621-35. https://doi.org/10.1007/s00158-009-0435-8
  21. D.J., Fleming, Polymer Rheology. s.l, 2004.
  22. A., Franck, Understanding Rheology of Thermoplastic Polymers, TA Instruments, 2008.
  23. Goodship V. Practical Guide to Injection Moulding. UK: Rapra Technology Limited, Shrewsbury (Shopshire); 2004.
  24. E., Hernandez, Effect of Degradation during Processing on the Melt Viscosity of a Thermoplastic Polyurethane, Santiago de Queretaro, Centro Nacional de Metrologia, Mexico, SM2008-S3C2-1134, 22, pp. 1-4, 2008.
  25. Hieber Cornelius. A Melt Viscosity Characterisation and its Application to Injection Moulding in Injection and Compression Moulding Funda-mentals. In: Isayev Avraam I, editor. Marcel Dekkar Inc.; 19870 8247 7670 4.
  26. Hsiung CM, Cakmak M, Ulcer Y. A structure oriented model to simulate the shear induced crystallization in injection moulding polymers: a Lagrangian approach. Polymer 1996;37:4555-71. https://doi.org/10.1016/0032-3861(96)00291-1
  27. Hsiung CM, Sheng Q. A rectilinear flow model approach to the simulation of the injection moulding process. Reinf. Plast. Compos. 1997;16:1242-51. https://doi.org/10.1177/073168449701601308
  28. J.P., Ibar, Viscosity Control for Molten Plastics Prior to Moulding. USA, Patent no. US Patent 5885495, 1999.
  29. Inn YW, Fischer RJ, Shaw MT. Visual observation of development of sharkskin melt fracture in polybutadiene extrusion. Rheol. Acta 1998;37: 573-82. https://doi.org/10.1007/s003970050144
  30. Isayev Avraam I, Upadhyay Ram K. In: Isayev Avraam I, editor. Flow of Polymeric Melts in Junture Regions of Injection Molding in Injection and Compression Molding Fundamentals. New York, USA. ISBN: 0 8247 7670 4.
  31. ISO 10072. Tools for Moulding, Sprue Bushes, Dimensions, 2nd ed., Geneva, Switzerland: International Organisation for Standardisation; 2004.
  32. Jaworski Z, Zakrzawska B. Towards multi scale modelling in product engineering. Comput. Chem. Eng. 2010;35(24)434-45.
  33. N., Jayalaksmi, D.K., Ramesha and G., PremaKumara, Experimental verification of mould filling analysis for an automotive recliner lever, in: Proceedings of the International Conference on 'Frontiers in Mechanical Engineering, NITK, Karnataka, 2010.
  34. S., Johnston, D., Kazmer, Z., Fan & R., Gao, Causes of Melt Temperature Variations Observed in the Nozzle During Injection Moulding. USA, Society of Plastic Engineers, 2007.
  35. Peter Jones. The Mould Design Guide. Smithers Rapra Technology Limited; 978-1-84735-087-9.
  36. Kalkar AK, Deshpande AA, Kulkarni MJ. In Situ composites from blends of polycarbonate and a thermotropic liquid-crystalline polymer: the Influence of the processing temperature on the rheology, morphology, and mechanical properties of injection-moulded microcomposites. J. Appl. Polym. Sci. 2007;106:34-45. https://doi.org/10.1002/app.26518
  37. Kazmer DO. Injection Mould Design Engineering. Munchen: Carl Hanser Verlag; 2007.
  38. Kazys R, Rekuviene R. Viscosity and density measurement methods for polymer melts ISSN 1392 2114. Ultrasound 2011;66(4).
  39. P.K., Kennedy, Practical & Scientific Aspects of Injection Moulding Simulation, Eindhoven, The Netherlands, 2008.
  40. Khomami B, Ranjbaran MM. Experimental studies of interfacial instabil-ities in multilayer pressure driven flow of polymeric melts. Rheol. Acta 1997;36(4)345-66. https://doi.org/10.1007/BF00396323
  41. Khor, CY, et al. 3D numerical and experimental investigations on polymer rheology in meso-scale injection moulding. Int. Commun. Heat Mass Transf. 2010;37:131-9. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.011
  42. N.E., Kissi & J.M., Piau, Stability Phenomena during Polymer Melt Extrusion, in: Rheology for Polymer Melts Processing. Amsterdam, Elsevier Science A G, 1996.
  43. Kolnaar JWH, Keller AA. Temperature window of reduced flow resistance in polyethyelene with implications for melt rheology: 3. Implications for flow. Polymer 1997;38(8)1817-33. https://doi.org/10.1016/S0032-3861(96)00707-0
  44. Koszkul J, Nabialek J. Viscosity models in simulation of the filling stage of the injection moulding process. J. Mater. Process. Technol. 2004;157-158:183-7. 0924 0136. https://doi.org/10.1016/j.jmatprotec.2004.09.027
  45. Kovacs JG, Bercsey T. Influence of mould properties on the quality of injection moulded parts. Period. Polytech. Ser. Mech. Eng. 2005;49(2)115-22.
  46. Kumar A, Ghosdastidar PS, Maju MK. Computer simulation of transport processes during injection mould-filling and optimisation of the moulding conditions. J. Mater. Process. Technol. 2002;120:438-49. https://doi.org/10.1016/S0924-0136(01)01211-0
  47. Lakkanna M, Kadoli R, Kumar GCM. Configuring sprue conduit expansion in plastic injection mould design. Int. J. Appl. Res. Mech. Eng. 2013;3(1)14-21.
  48. M., Lakkanna, R., Kadoli & G.C.M., Kumar, Design Sensitivity of Sprue Bush in a Plastic Injection Mould. Sivakasi, Tamilnadu, India, MEPCO Schlenk Engg College, DE08, p. 36, 2013.
  49. M., Lakkanna, R., Kadoli & G.C.M., Kumar, Influence of Thermo-plastic Shear Thinning Behaviour on Sprue Conduit Expansion in Plastic Injection Moulding, Bangalore, Indian Institute of Science, 2014.
  50. M., Lakkanna, R., Kadoli & G.C.M., Kumar, 2014, Viscosity Biased Sprue Conduit Expansion for Plastic Injection Moulding. s.l., Institution of Engineers (India), Karnataka State Centre, 2014.
  51. Larson RG. The Structure and Rheology of Complex Fluids. Oxford University Press Inc.; 1999.
  52. Lee SHK, Jaluria Y. Effects of stream wise convergence in radius on the laminar forced convection in axisymmetric ducts. Numer. Heat Transf. A 1995;28(1)19-38. https://doi.org/10.1080/10407789508913730
  53. Liang JZ. Characteristics of melt shear viscosity during extrusion of polymers. Polym. Test.: Mater. Charact. 2002;21(3)307-11. https://doi.org/10.1016/S0142-9418(01)00088-5
  54. Liang J-Z, Ness JN. Studies on melt flow properties of low density and linear density polyethylene blends in capillary extrusion. Polym. Test. 1997;16(2)173-84. https://doi.org/10.1016/S0142-9418(96)00041-4
  55. Liang J-Z. Effect of the die angle on the extrusion swell of rubber compound. J. Mater. Process. Technol. 1995;52(2-4)207-12. https://doi.org/10.1016/0924-0136(94)01610-D
  56. Liang J-Z. Estimation of die-swell ratio for polymer melts from exit pressure drop data. Polym. Test.: Data Interpret. 2000;20(1)29-31. https://doi.org/10.1016/S0142-9418(99)00074-4
  57. Liang J-Z. Estimation of entry natural converging angles during capillary extrusion flow of carbon black filled NR/SBR compound. Polym. Test.: Mater. Behav. 2005;24(4)435-8. https://doi.org/10.1016/j.polymertesting.2005.01.011
  58. Liang J-Z. Pressure effect of viscosity for polymer fluids in die flow. Polymer 2001;42(8)3709-12. https://doi.org/10.1016/S0032-3861(00)00507-3
  59. Liang J-Z. The elastic behaviour during capillary extrusion of LDPE/ LLDPE blend melts. Polym. Test.: Mater. Behav. 2002;21(1)69-74. https://doi.org/10.1016/S0142-9418(01)00050-2
  60. Liang J-Z. The melt elastic behaviour of polypropylene/glass bead composites in capillary flow. Polym. Test.: Mater. Behav. 2002;21(8)927-31. https://doi.org/10.1016/S0142-9418(02)00036-3
  61. Liang J-Z, Chan JSF, Wong ETT. Effects of operation conditions and die angles on the pressure losses in capillary flow of PS melt. J. Mater. Process. Technol. 2001;114(2)118-21. https://doi.org/10.1016/S0924-0136(01)00731-2
  62. Lin P, Jaluria Y. Numerical approach to model heat transfer in polymer melts flowing in constricted channels. Numer. Heat Transf. A 1996;30(2)103-23. https://doi.org/10.1080/10407789608913831
  63. Lyondell. A Guide to Polyolefin Injection Moulding. USA: Lyondell Chemical Company; 2013.
  64. Martinez A, Castany J, Mercado D. Characterization of viscous response of a polymer during fabric IMD injection process by means a spiral mould. Measurement 2011;44:1806-18. https://doi.org/10.1016/j.measurement.2011.09.011
  65. Menges G, Mohren P. How to make Injection Moulds. Munich: Hanser; 1993.
  66. Nelson, Jr H., Philip, Viscosity control for a plastic moulding machine, US Patent 3924840, USA, 1975.
  67. Ohlemiller T.J. et al., Exploring the role of polymer melt viscosity in melt flow and flammability behaviour, in: Proceedings of the New Developments and Key Market Trends in Flame Retardancy, Fire Retardant Chemicals Association, Ponte Vedra, FL, USA, vol. 15-18, pp. 1-28, 2000.
  68. Osswald T. Processing Fundamentals, Injection Moulding Handbook, 3rd ed., Munich, Germany: Hanser Publishers; 2008.
  69. Ozawa T. Kinetics of non-isothermal crystallization. Int. J. Polym. Mater. 1971;12:150-63.
  70. Ozcelik Babur, Ozbay Alper, Erhan Demirbas. Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection moulding ISSN 0735 1933. Int. Commun. Heat Mass Transf., 37; 1359-65.
  71. Perez-Gonzalez J. Exploration of the slip phenomenon in the capillary flow of linear LDPE via electrical measurements. J. Rheol. 2001;45(4)845. https://doi.org/10.1122/1.1380259
  72. Peters GWM, Bogaerds ACB. Viscoelastic Instabilities in Injection Moulding in Injection Molding. In: Kamal Musa R, Isayev Avraam I, Liu Shih Jung, editors. Technology and Fundamentals. Munich. ISBN: 978 3 446 41685 7.
  73. Pye RGW. Injection Mould Design Handbook. Longman Scientific & Technical; 1992.
  74. Ramamurthy AV. Wall Slip in viscous fluids and Influence of materials of construction. J. Rheol. 1986;30(2)337. 21 Pages). https://doi.org/10.1122/1.549852
  75. Ramamurthy AV, McAdam JCH. Velocity measurements in the die entry region of a capillary rheometer. J. Rheol. 1980;24(2)167. (22 Pages). https://doi.org/10.1122/1.549561
  76. Rao NS. Design Formulas for Plastics Engineers. Munich: Carl Hanser Verlag; 1991.
  77. Rosato DV, Rosato DV. Injection Moulding Handbook. New York, USA: Van Nostrand Reinhold Co. Inc.; 1985.
  78. Rosato DV, Rosato DV, Rosato MG. Plastic Design Handbook. Norwell, MA, USA: Kluwer Academic Publishers; 2001.
  79. Rubin II. Injection Moulding -Theory & Practise. New York, USA: John Wiley & Sons; 1972.
  80. Sadabadi H, Ghasemi M. Effects of some injection moulding process parameters on fiber orientation tensor of short glass fibre polystyrene composites (SGF/PS). J. Reinf. Plast. Compos. 2007;26(17)1729-41. https://doi.org/10.1177/0731684407081352
  81. Schwartz S, Goodman HS. Plastics Materials and Processes. Van Nostrand Reinhold Co. Inc.; 1982.
  82. Sen C, Ameri F, Summers JD. An entropic method for sequencing discrete design decisions. J. Mech. Des. 2010;132.
  83. R., Shanker & R., Ramanathan, Effect of die geometry on flow kinematics in extrusion dies. s.l., Society of Plastics Engineers, pp. 65-68, 1995.
  84. Sheng Q, Hsiung CM. High Performance Adaptive ESM Prototyping of 3D Polymer Injection Moulding. Midland: Dow Chemical Company; 1998.
  85. Stankhd, Requirement of the Sprue, its Functions, Design of the Injection Moulded Part, Sprue and Gate Problems in Injection Moulding. Dussel-doft, Verein Deutscher Ingenieure, VDI Verlag, 1970.
  86. Stevens MP. Polymer Chemistry: An Introduction, 3rd ed., New York, USA: Oxford University Press; 1998.
  87. Strong BA. Plastics: Materials & Processing, 3rd ed., Ohio: Pearson Prentice Hall; 2006.
  88. Takahashi Y, Kitade S, Kurashima N, Noda I. Viscoelastic properties of immiscible polymer blends under steady and transient shear flows. Polym. J. 1994;26:1206-12. https://doi.org/10.1295/polymj.26.1206
  89. J.P., Tordella, Unstable Flow of Molten Polymers, in: Rheology, Academic Press, New York, USA, 1969.
  90. D.S., Trifonov & Y.E., Toshev, An Approach for Predicting the Correct Geometry and Parameters of the Sprue System of an Optical Disc Mould by Use a Computer Aided Design and Simulation. s.l., Whittles Publish-ing Ltd., pp. 221-224, 2007.
  91. Arnold Tukker. Handbook on Life Cycle Assessment. Kluwer Academic Publishers; 1-4020-0228-97.
  92. Wang Jeou Shyong, Porter Roger S. On the viscosity-temperature behaviour of polymer melts. Rheol. Acta, 34; 496-503.
  93. K.K., Wang, Mould-Filling-Simulation in Injection Moulding of Amor-phous Polymers, 1980.
  94. T., Whelan & J., Goff, Injection Moulding of Thermoplastics Materials-1. Van Nostrand Reinhold, 1990.
  95. White FM. Fluid Mechanics, 6th ed., New Delhi: Tata McGraw Hill Education Pvt Ltd.; 2009.
  96. White JL. Critique on flow patterns in polymer fluids at the entrance of a die and instabilities leading to extrudate distortion. Appl. Polym. Symp. 1973;20(9)155-74.
  97. E.C., Worden, Nitrocellulose Industry, 1911.
  98. Wu, G, et al. Rubber as additives to lower thermal expansion coefficient of plastics: 1. Morphology and properties. Polymer 2004;45(9)3085-90. https://doi.org/10.1016/j.polymer.2004.02.069
  99. Yamaki, H., Matsuura, Y. & Kataoka, H.. Method for Injection Moulding of Thermoplastics Resins. Japan, USA, Patent no. US Patent 006 146 577A, 2000.
  100. Yang, X, et al. Fast flow behaviour of highly entangled monodisperse polymers 1. Interfacial stick-slip transition of polybutadiene melts. Rheol. Acta 1998;37:415-23. https://doi.org/10.1007/s003970050128
  101. Zhang CB, Chen YP, Shi MH. Effects of roughness elements on laminar flow and heat transfer in micro channels. Chem. Eng. Process.: Process Intensif. 2010;49(11)1188-92. https://doi.org/10.1016/j.cep.2010.08.022

Cited by

  1. Sustainable Manufacturing and Parametric Analysis of Mild Steel Grade 60 by Deploying CNC Milling Machine and Taguchi Method vol.10, pp.10, 2016, https://doi.org/10.3390/met10101303
  2. Isolation of hydrodynamic parameters for the fibre length attrition in injection-moulded short-fibre polymer composites vol.40, pp.13, 2016, https://doi.org/10.1177/0731684420983899