DOI QR코드

DOI QR Code

Programming of adaptive repair process chains using repair features and function blocks

  • Spocker, Gunter (Fraunhofer Institute for Production Technology IPT, Department CAx-Technologies) ;
  • Schreiner, Thorsten (Fraunhofer Institute for Production Technology IPT, Department CAx-Technologies) ;
  • Huwer, Tobias (Fraunhofer Institute for Production Technology IPT, Department CAx-Technologies) ;
  • Arntz, Kristian (Fraunhofer Institute for Production Technology IPT, Department CAx-Technologies)
  • Received : 2015.04.07
  • Accepted : 2015.06.22
  • Published : 2016.01.01

Abstract

The current trends of product customization and repair of high value parts with individual defects demand automation and a high degree of flexibility of the involved manufacturing process chains. To determine the corresponding requirements this paper gives an overview of manufacturing process chains by distinguishing between horizontal and vertical process chains. The established way of modeling and programming processes with CAx systems and existing approaches is shown. Furthermore, the different types of possible adaptions of a manufacturing process chain are shown and considered as a cascaded control loop. Following this it is discussed which key requirements of repair process chains are unresolved by existing approaches. To overcome the deficits this paper introduces repair features which comprise the idea of geometric features and defines analytical auxiliary geometries based on the measurement input data. This meets challenges normally caused by working directly on reconstructed geometries in the form of triangulated surfaces which are prone to artifacts. Embedded into function blocks, this allows the use of traditional approaches for manufacturing process chains to be applied to adaptive repair process chains.

Keywords

References

  1. Gao J, Chen X, Yilmaz O, Gindy N. An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. The International Journal of Advanced Manufacturing Technology 2008;36(11-12)1170-9. https://doi.org/10.1007/s00170-006-0923-6
  2. Bremer C. Adaptive Bearbeitung fur die Uberholung von Umformwerkzeugen und Turbinenkomponenten, Spanende Fertigung: Prozesse, Innovationen, Werkstoffe, vol.4, Vulkan-Verlag GmbH, Essen; 2005; p. 496-504.
  3. Werner A. Verschleissphanomene im Flugtriebwerksbau. Technikberichte, 〈http://www.mtu.de/de/technologies/engineering_news/others/Werner_Verschleissphaenomene_im_Flugtriebwerksbau_de.pdf (Cited 2Juni 2013).
  4. Browne J, Dubois D, Rathmill K, Sethi SP, Stecke KE. Classification of flexible manufacturing systems. The FMS Magazine 1984;2(2)114-7.
  5. Sethi AK, Sethi SP. Flexibility in manufacturing. International Journal of Flexible Manufacturing Systems 1990;2(4)289-328. https://doi.org/10.1007/BF00186471
  6. Kusiak A. Flexible manufacturing systems. International Journal of Production Research 1985;23(6)1057-73. https://doi.org/10.1080/00207548508904765
  7. Vollertsen F, Hu Z, Niehoff HS, Theiler C. State of the art in micro forming and investigations into micro deep drawing. Journal of Materials Processing Technology 2004;151(1)70-9. https://doi.org/10.1016/j.jmatprotec.2004.04.266
  8. Qi H, Azer M, Singh P. Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. The International Journal of Advanced Manufacturing Technology 2010;48(1-4)121-31. https://doi.org/10.1007/s00170-009-2265-7
  9. TurPro, CAx-Framework-Fraunhofer-Innovationscluster TurPro, 〈http://www.turpro.de/de/projekt/cax〉(Cited 28 April 2013).
  10. Vajna S, Weber C, Bley H, Zeman K. CAx furI ngenieure, vol. 1. Berlin Heidelberg: Springer; 2009.
  11. Altmuller S, Bergs T, Borsch W, Jelich C, Klocke F, Kriegl B, Murtezaoglu Y, Siebenwurst C, Witty M. Beherrschung adaptiver Prozessketten. In: Wettbewerbsfaktor Produktionstechnik, Aachener Per-spektiven, Aachener Werkzeugmaschinen-Kolloquium, Shaker, Aachen; 2011; p.405-22.
  12. Shah JJ. Parametric and feature-based CAD/CAM: concepts, techniques, and applications. New York: John Wiley & Sons; 1995.
  13. Hehenberger P. Computerunterstutzte Fertigung, Eine kompakte Einfuhrung-rung. Heidelberg, Dordrecht, London, New York: Springer; 2011.
  14. Lehner F. Wissensmanagement: Grundlagen, Methoden und technische Unterstützung, 4th ed., Carl Hanser Verlag GmbH Co KG; 2012.
  15. Siemens PLM Software, NX: Siemens PLM Software, 〈http://www.plm.automation.siemens.com/products/nx/(Cited 03.12.14).
  16. Xu Y, Brennan RW, Zhang X, Norrie DH. A reconfigurable concurrent function block model and its implementation in real-time Java. Integrated Computer-Aided Engineering 2002;9(3)263-79.
  17. Wang H, Xu X, Tedford JD. An adaptable CNC system based on STEP-NC and function blocks. International Journal of Production Research 2007;45(17)3809-29. https://doi.org/10.1080/00207540600774075
  18. Klocke F, Spocker G, Huwer T, Bobek T, Arntz K. Reducing data loss within adaptive process chains in the context of commonly used CAx systems. Production Engineering 2015;9(3)307-16. https://doi.org/10.1007/s11740-015-0616-9
  19. VDI Richtlinie 2218. Information technology in product development, Feature-Technology; March 2003.
  20. Xu X, Wang L, Newman ST. Computer-aided process planning-a critical review of recent developments and future trends. International Journal of Compter Integrated Manufacturing 2011;24(1)1-31. https://doi.org/10.1080/0951192X.2010.518632
  21. ISO14649-1. Industrial automation systems and integration-physical device control-data model for computerized numerical controllers-part 1: overview and fundamental principles, International Organization for Standardization 2003.
  22. Laguionie R, Rauch M, Hascoët, J-Y, et al. Toolpaths programming in an intelligent STEP-NC manufacturing context. Journal of Machine Engineering 2008;8(1)33-43.
  23. Brecher C, Vitr M, Wolf J. Closed-loop CAPP/CAM/CNC process chain based on STEP and STEP-NC inspection tasks. International Journal of Computer rIntegrated Manufacturing 2006;19(6)570-80. https://doi.org/10.1080/09511920600622064
  24. Rauch M, Laguionie R, Hascoet J-Y, Suh S-H. An advanced STEP-NC controller for intelligent machining processes. Robotics and Computer-Integrated Manufacturing 2012;28(3)375-84. https://doi.org/10.1016/j.rcim.2011.11.001
  25. International Electrotechnical Commission, IEC 61499-1. Function Blocks-Part 1 Architecture 2005.
  26. Shen W, Wang L, Hao Q. Agent-based distributed manufacturing process planning and scheduling. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 2006;36(4)563-77. https://doi.org/10.1109/TSMCC.2006.874022
  27. Tutsch R. Fertigungsmesstechnik. Handbuch der Mess- und Automatisierungstechnik in der Produktion. Berlin Heidelberg: Springer; 199-362.
  28. Yao S. Computer-aided manufacturing planning (CAMP) of mass customization for non-rotational part production [Ph.D. thesis]. Worcester Polytechnic Institute 2003.
  29. Nestler A. Erfahrungsbasierte Fertigungs- und Bearbeitungs-Feature. In: Forschungsergebnisbericht der TU Dresden; 1999; p.1-8.
  30. Westkamper E. New trends in production. Reconfigurable manufacturing systems and transformable factories. Berlin Heidelberg: Springer; 15-26.
  31. 3D Systems Inc. Stereolithography interface specification; June 1989.
  32. AdaM. Innovation Cluster AdaM. 〈http://www.innovationscluster-adam.de/en.html〉[Cited 03.12.14].
  33. Denkena B, Lorenzen L-E, Schmidt J. Adaptive process planning. Production Engineering 2012;6(1)55-67. https://doi.org/10.1007/s11740-011-0353-7
  34. Sendler U. Industrie 4.0-Beherrschung der industriellen Komplexitat mit SysLM (Systems Lifecycle Management). In: Industrie 4.0, Xpert.press, Springer, Berlin, Heidelberg; 2013; p.1-19.
  35. Yao S, Han X, Yang Y, Rong YK, Huang S, Yen D, Zhang G. Computer-aided manufacturing planning for mass customization, framework. The International Journal of Advanced Manufacturing Technology 2007;32(1-2)194-204. https://doi.org/10.1007/s00170-005-0327-z
  36. Groover MP. Fundamentals of modern manufacturing: materials, processes, and systems, 4th ed., New Jersey: John Wiley & Sons; 2010.
  37. Yang Z, Qiao L, Jiang L. Improving the performances of part dispatching based on multiple process plans using graph theory. International Journal of Production Research 1998;36(7)1987-2003. https://doi.org/10.1080/002075498193075
  38. Surmann T. Geometrisch-physikalische Simulation der Prozessdynamik fur das funfachsige Frasen von Freiformflachen [Ph.D. thesis]. Universitat Dortmund; 2006.
  39. Denkena B, Henning H, Henjes J. Model-Based dimensioning of multistage processes regarding multiple criteria. In: Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology. 2010; Springer; p.1043-56.
  40. Wang XV, Xu XW. DIMP: an interoperable solution for software integration and product data exchange. Enterprise Information Systems 2012;6(3)291-314. https://doi.org/10.1080/17517575.2011.587544
  41. Kelly S, Tolvanen J-P. Domain-specific modeling enabling full code generation. New Jersey: John Wiley & Sons; 2008.
  42. Vyatkin V. IEC 61499 as enabler of distributed and intelligent automation: state-of-the-artreview. IEEE Transactions on Industrial Informatics 2011;7(4)768-81. https://doi.org/10.1109/TII.2011.2166785
  43. Spocker G, Bobek T, Glasmacher L, Klocke F. Towards a CAx-framework for adaptive programming using generic process blocks for manufacturing. In: New Production Technologies in Aerospace Industry, Proceedings of the 4th Machining Innovations Conference, Hannover, September 2013, Lecture Notes in Production Engineering, Springer; 2014; p.153-62.
  44. Klocke F. Manufacturing processes 1: cutting. Heidelberg, Dordrecht, London, New York: Springer; 2011.
  45. Toyserkani E, Khajepour A, Corbin SF. Laser cladding. Boca Raton, Florida: CRC Press; 2010.

Cited by

  1. Development of a voxelization tool for the calculation of vector-based workpiece representations vol.100, pp.None, 2016, https://doi.org/10.1016/j.procir.2021.05.022
  2. CNC-C2: an ISO14649 and IEC61499 compliant controller vol.34, pp.6, 2016, https://doi.org/10.1080/0951192x.2021.1911002