• Title/Summary/Keyword: reinforced high strength concrete

Search Result 1,149, Processing Time 0.022 seconds

A new strength model for the high-performance fiber reinforced concrete

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • Steel fiber reinforced concrete is increasingly used day by day in various structural applications. An extensive experimentation was carried out with w/cm ratio ranging from 0.25 to 0.40, and fiber content ranging from zero to1.5 percent by volume with an aspect ratio of 80 and silica fume replacement at 5%, 10% and 15%. The influence of steel fiber content in terms of fiber reinforcing index on the compressive strength of high-performance fiber reinforced concrete (HPFRC) with strength ranging from 45 85 MPa is presented. Based on the test results, equations are proposed using statistical methods to predict 28-day strength of HPFRC effecting the fiber addition in terms of fiber reinforcing index. A strength model proposed by modifying the mix design procedure, can utilize the optimum water content and efficiency factor of pozzolan. To examine the validity of the proposed strength model, the experimental results were compared with the values predicted by the model and the absolute variation obtained was within 5 percent.

Size Effect on Shear Strength of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보의 전단강도에 관한 크기효과)

  • 김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.155-160
    • /
    • 1992
  • In this study , the size effect on diagonal shear failure of reinforced high strength concrete beams was investigated, For this purpose, ten singly reinforced high strength concrete beams without web reinforcement were tested for five different dimensions of effective depth which were varied from 67mm to 915mm. The compressive strength of concrete used in this study was 53.7 MPa. One type of reinforcing bar with nominal yield strength of 400 MPa was used. Test results were analyzed and compared with strength predicted by ACI code equation, Zutty's equation and Bazant &Kim's equation. As the results, ACI code equation was seriously unconservative for beams with d of 915mm. Bazant & Kim's equation predicted well the trend of test data. Within the scope of this study, there was no clear difference in size effect with variation of compressive strength of concrete.

  • PDF

Concrete Shear Strength of High Strength Concrete Beams Reinforced with FRP Bars (FRP Bar를 사용한 고강도 콘크리트 보의 콘크리트 전단강도)

  • Yun, Hyeong-Su;Jang, Hee-Suk;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.287-290
    • /
    • 2005
  • This study evaluates the concrete shear strength for normal and high strength concrete beams reinforced with 3 type FRP bars (CFRP, GFRP, HFRP). Experimental results obtained from twenty-four simply supported concrete beams are compared with values predicted by FRP shear strength expressions proposed in the various literatures, including the ACI Committee 318 and ACI Committee440. The shear strength correction factors are proposed through the regression analysis.

  • PDF

Analytical Study on the Inelastic Behavior of Reinforced High-Strength Concrete Bridge Columns (고강도 철근콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Shin, Hyun-Mock;Lee, Heon-Min;Sung, Dae-Jung;Kim, Tae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.73-81
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of reinforced high-strength concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model ol reinforcing steel. The smeared rack approach is incorporated. The increase of concrete strength due to the lateral confining reinforcement has been also taken into account to model the confined high-strength concrete. The proposed numerical method for the inelastic behavior of reinforced high-strength concrete bridge columns is verified by comparison with reliable experimental results.

Investigation on Improve Durability of Fiber-Reinforced High-Strength concrete (섬유보강 고강도 콘크리트의 내구성능 향상에 관한 검토)

  • Lee, Hye-Jin;Ha, Jung-Soo;Kim, Kyu-Jin;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.93-95
    • /
    • 2013
  • Recently, with the increase in the construction of ultra-high buildings and long-span structures, there is great demand for high-strength concrete which can reduce the structural weight and thickness of member sections. While developing high-strength concrete to meet performance requirements, certain issues at the design stage must also be considered. The issues include diseconomy from a great amount of per-unit cement, spalling failure by fire at ultra-high building, autogenous shrinkage caused by increased hydration activity of binder from use of a superplasticizer. Therefore, the purpose of this study is examined the strain characteristics of Fiber-reinforced-high-strength concrete(FRHSC), which differ from those of general concrete owing to autogenous shrinkage. Based on the experimental data, we proposed an autogenous shrinkage prediction model.

  • PDF

An Experimental Study on Failure Modes of High Strength Reinforced Concrete Columns (고강도 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • 최창익;박동규;손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • With increasing use of high strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of current design codes. High strength concrete has an advantage of strength capacity and stiffness especially for column elements. This paper presents an experimental study of high strength concrete tied columns subjected to eccentric loading. The main variables included in this test were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 34.9Mpa(356kg/$\textrm{cm}^2$ ) to 93.2Mpa(951kg/$\textrm{cm}^2$ ) and the longitudinal steel ratios were between 1.1% and 5.5%. The eccentricity was selected for the different failure modes, i.e., compression control, balanced point, and tension control. The slenderness ratio varied from 19 to 61. The column specimens with same slenderness ratio but with different concrete compressive strength were constructed and tested. The purpose of this paper is to show failure modes of high strength reinforced concrete columns.

  • PDF

EFFECT OF CONCRETE STRENGTH ON FLEXURAL DEFLECTION OF HIGH-STRENGTH REINFORCED CONCRETE BEAMS

  • Inju Lee;Taewan Kim;Sung-Nam Hong;Jie Cui;Sun-Kyu Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1313-1317
    • /
    • 2009
  • Deflections of Reinforced concrete structures must satisfy the permissible values and it is hard to predict the due to uncertainty of deflection of the reinforced concrete structures. Thus, many researchers have suggested a number of experimental equation of deflection against the uncertainty. In a specification, a procedure to evaluate flexure deflection using effective moment of inertia and moment-curvature relation is suggested. ACI offers a method using effective moment of inertia, which has been developed by Branson. Eurocode 2(EC2) suggests a procedure to evaluate deflection of reinforced concrete structure using moment-curvature relation. In this paper, a series of experiments were conducted on the singly reinforced concrete beams which have the same reinforcement ratio and different concrete strength. Therefore, the effect of the concrete strength on the deflection of the beams was analysed. The deflections obtained from the experiment were compared with the deflections calculated with ACI code and EC2.

  • PDF

An experimental study on mechanical behavior of shield segment with high-strength concrete and high-tension rebar (고강도 콘크리트와 고장력 철근을 적용한 쉴드 세그먼트의 역학적 거동에 대한 실험적 연구)

  • Lee, Gyu-Phil;Park, Young-Taek;Choi, Soon-Wook;Bae, Gyu-Jin;Chang, Soo-Ho;Kang, Tae-Sung;Lee, Jin-Seop
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.215-230
    • /
    • 2012
  • An experimental research on the possibility of using high-strength concrete with the design strength of 60 MPa and high-tension rebar with the yielding strength of 600 MPa instead of conventional reinforced concrete segment to reduce its production cost was performed. Full-scale bending tests on both conventional and high-strength reinforced concrete segments were carried out to compare their mechanical and structural behaviors of the segments under flexural action. From the experiments, it was shown that the failure load of high-strength reinforced concrete segment was approximately 30% higher than that of the conventional segment even though reinforcements in high-strength segment were reduced by 26%. The test result showed that the bearing capacity of high-strength segment highly increased by high-strength concrete and high-tension rebar. It also verified the high possibility of high-strength reinforced concrete segment as a technical alternative to reduce the production cost of segments in a shield tunnel.

Benefits of Puddling of Fiber Reinforced UHSC for Enhanced Transmission of Column Loads

  • Lee, Joo-Ha;Kim, Gyu-Dong;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.75-78
    • /
    • 2005
  • This study reports on the structural characteristics of slab-column connections using an ultra-high-strength-fiber-reinforced concrete. Compression tests were performed on two slab-column and four isolated column specimens. During the column load tests were performing on the slab-column specimens, the slab loads were also applied to consider actual confinement condition at the slab-column joint. The main parameter investigated was the ' puddling ' of ultra-high-strength-fiber-reinforced concrete. This paper also investigates the effects of some parameters on slab-column specimens and isolated column specimens without the surrounding slab for their ability to transmit axial loads from the ultra-high-strength concrete columns through slab-column connections. The beneficial effects of the ultra-high-strength-fiber-reinforced concrete puddling on the transmission of column loads through slab-column connections are demonstrated.

  • PDF

A Study on the Flexural Behavior of Reinforced High Strength Lightweight Concrete Beams With Web Reinforcement (전단보강된 고강도경량콘크리트 보의 휨거동에 관한 연구)

  • 오창륜;김재식;곽윤근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.513-518
    • /
    • 1998
  • In general, flexural strength and ductility of reinforced concrete beam with stirrup depend on the compressive strength of concrete and longitudinal steel ratio. In this study, nine reinforced high strength lightweight concrete beams and three reinforced normalweight concrete beams with stirrup were tested to investigate their behavior and to determine their ultimate moment capacity. The variable were strength of concrete (400, 500kg/$\textrm{cm}^2$) and the ratio of tensile steel content to the ratio of the balanced steel content(0.22<$\rho$/$$\rho$_b$<0.56). Test results are presented in terms of load-deflection behavior, ductility index, and cracking patterns.

  • PDF