• Title/Summary/Keyword: reinforced concrete structural analysis

Search Result 1,307, Processing Time 0.023 seconds

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Comparative Review on Term of Warranty Liability of Reinforced Concrete Work through Occurred Defect Data Analysis in Apartment Building (공동주택 하자실적자료 분석을 통한 철근콘크리트 공사의 하자담보책임기간 비교연구)

  • Seo, Deok-Seok;Park, Jun-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.266-267
    • /
    • 2017
  • As apartment buildings defect lawsuits become socioeconomic problems, an objective basis system for the term of warranty liability of reinforced concrete constructions is urgent. This study was carried out as a basic study for developing a basis system for the term of warranty liability. To do this, defect data actual collected in apartment complexes were collected and analyzed. As the result of checking the cumulative rate of defect occurrence in reinforced concrete construction by year, the point of time of reaching the 90% level was the 5th years, which was similar with the provision of the Apartment Building Management Act. However, the current Supreme Court precedent has decided that the term of warranty liability for the main structural parts in reinforced concrete construction shall be 10 years and the dispute is expected to continue in the future in the defect lawsuit.

  • PDF

A Parametric Study on the Loading Rate Sensitivity of R/C Element Behavior (R/C 부재의 하중재하속도 변화에 따른 민감성 연구)

  • 심종성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.38-43
    • /
    • 1989
  • An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was uses to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections were also suggested.

  • PDF

Seismic evaluation and retrofitting of reinforced concrete buildings with base isolation systems

  • Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.293-311
    • /
    • 2016
  • A parametric study on the nonlinear seismic response of isolated reinforced concrete structural frame is presented. Three prototype frames designed according to the 1954 Hellenic seismic code, with number of floor ranging from 1 to 3 were considered. These low rise frames are representative of many existing reinforced concrete buildings in Greece. The efficacy of the implementation of both lead rubber bearings (LRB) and friction pendulum isolators (FPI) base isolation systems were examined. The selection of the isolation devices was made according to the ratio $T_{is}/T_{fb}$, where Tis is the period of the base isolation system and $T_{bf}$ is the period of the fixed-base building. The main purpose of this comprehensive study is to investigate the effect of the isolation system period on the seismic response of inadequately designed low rise buildings. Thus, the implementation of isolation systems which correspond to the ratio $T_{is}/T_{fb}$ that values from 3 to 5 is studied. Nonlinear time history analyses were performed to investigate the response of the isolated structures using a set of three natural seismic ground motions. The evaluation of each retrofitting case was made in terms of storey drift and storey shear force while in view of serviceability it was made in terms of storey acceleration. Finally, the maximum developed displacements and the residual displacements of the isolation systems are presented.

Damage controlled optimum seismic design of reinforced concrete framed structures

  • Gharehbaghi, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.53-68
    • /
    • 2018
  • In this paper, an innovative procedure is proposed for the seismic design of reinforced concrete frame structures. The main contribution of the proposed procedure is to minimize the construction cost, considering the uniform damage distribution over the height of structure due to earthquake excitations. As such, this procedure is structured in the framework of an optimization problem, and the initial construction cost is chosen as the objective function. The aim of uniform damage distribution is reached through a design constraint in the optimization problem. Since this aim requires defining allowable degree of damage, a damage pattern based on the concept of global collapse mechanism is presented. To show the efficiency of the proposed procedure, the uniform damage-based optimum seismic design is compared with two other seismic design procedures, which are the strength-based optimum seismic design and the damage-based optimum seismic design. By using the three different seismic design methods, three reinforced concrete frames including six-, nine-, and twelve-story with three bays are designed optimally under a same artificial earthquake. Then, to show the effects of the uniform damage distribution, all three optimized frames are used for seismic damage analysis under a suite of earthquake records. The results show that the uniform damage-based optimum seismic design method renders a design that will suffer less damage under severe earthquakes.

An Analytical Investigation on the Flexural Behavior of FRP Reinforced Concrete Slab by Orthotropic Plate Theory (직교이방성 판이론에 의한 FRP 보강 콘크리트 슬래브의 휨해석)

  • 손경욱;정재호;정상균;윤순종;이승식
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.9-14
    • /
    • 2004
  • In this study, analytical investigations on the flexural behavior of FRP reinforced concrete slab were discussed. In the derivation of analytic solution, the FRP reinforced concrete slab was modeled as a structural orthotropic plate. To determine the flexural rigidities of an orthotropic plate model, the elastic equivalence method was employed. In the finite element analysis, the approximate method to determine the rigidity matrix of orthotropic plate element was also suggested using the elastic equivalence method. The results obtained by the analytical solution and the finite element analysis were compared with that of experiment.

Curvature-based analysis of concrete beams reinforced with steel bars and fibres

  • Kaklauskas, Gintaris;Sokolov, Aleksandr;Shakeri, Ashkan;Ng, Pui-Lam;Barros, Joaquim A.O.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.349-365
    • /
    • 2022
  • Steel fibre-reinforced concrete (SFRC) is an emerging class of composite for construction. However, a reliable method to assess the flexural behaviour of SFRC structural member is in lack. An analytical technique is proposed for determining the moment-curvature response of concrete beams reinforced with steel fibres and longitudinal bars (R/SFRC members). The behaviour of the tensile zone of such members is highly complex due to the interaction between the residual (tension softening) stresses of SFRC and the tension stiffening stresses. The current study suggests a transparent and mechanically sound method to combine these two stress concepts. Tension stiffening is modelled by the reinforcement-related approach assuming that the corresponding stresses act in the area of tensile reinforcement. The effect is quantified based on the analogy between the R/SFRC member and the equivalent RC member having identical geometry and materials except fibres. It is assumed that the resultant tension stiffening force for the R/SFRC member can be calculated as for the equivalent RC member providing that the reinforcement strain in the cracked section of these members is the same. The resultant tension stiffening force can be defined from the moment-curvature relation of the equivalent RC member using an inverse technique. The residual stress is calculated using an existing model that eliminates the need for dedicated mechanical testing. The proposed analytical technique was validated against test data of R/SFRC beams and slabs.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

Validity Evaluation of Effective Strength of Concrete Strut using Strut-Tie Model Analysis of Structural Concrete (콘크리트 구조부재의 스트럿-타이 모델 해석을 통한 스트럿 유효강도의 적합성 평가)

  • Jeun, Chang Hyun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.443-462
    • /
    • 2010
  • The strut-tie model approach has proven to be effective in the ultimate analysis and design of structural concrete with disturbed regions. For the reliable analysis and design by the approach, however, the effective strength of concrete struts must be determined accurately. In this study, the validity of the effective strength of concrete struts, presented by the several design codes and many researchers including the author, was examined through the ultimate strength analysis of 24 reinforced concrete panels, 275 reinforced concrete deep beams, and 218 reinforced concrete corbels by using the conventional linear strut-tie model approach of current codes. The present study shows that the author's approach, resulting in an accurate and consistent evaluation of the ultimate strength of the panels, deep beams, and corbels, may reflect rationally the effects of primary variables including the types of strut-tie model and structural concrete, the conditions of load and geometry, and the strength of concrete in the strut-tie model analysis and design of structural concrete.

An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams

  • Varshney, L.K.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.751-763
    • /
    • 2019
  • Steel-concrete composition is widely used in the construction due to efficient utilization of materials. The service load behavior of composite structures is significantly affected by cracking, creep and shrinkage effects in concrete. In order to control these effects in concrete slab, an efficient and novel strategy has been proposed by use of fiber reinforced concrete near interior supports of a continuous beam. Numerical study is carried out for the control of cracking, creep and shrinkage effects in composite beams subjected to service load. A five span continuous composite beam has been analyzed for different lengths of fiber reinforced concrete near the interior supports. For this purpose, the hybrid analytical-numerical procedure, developed by the authors, for service load analysis of composite structures has been further improved and generalized to make it applicable for composite beams having spans with different material properties along the length. It is shown that by providing fiber reinforced concrete even in small length near the supports; there can be a significant reduction in cracking as well as in deflections. It is also observed that the benefits achieved by providing fiber reinforced concrete over entire span are not significantly more as compared to the use of fiber reinforced concrete in certain length of beam near the interior supports in continuous composite beams.