• Title/Summary/Keyword: reinforced concrete members

Search Result 876, Processing Time 0.025 seconds

Direct Inelastic Design of Reinforced Concrete Members Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 철근콘크리트 부재의 직접 비탄성 설계)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.345-356
    • /
    • 2008
  • In the previous study, direct inelastic strut-and-tie model (DISTM) was developed to perform inelastic design of reinforced concrete members by using linear analysis for their secant stiffness. In the present study, for convenience in design practice, the DISTM was further simplified so that inelastic design of reinforced concrete members can be performed by a run of linear analysis, without using iterative calculations. In the simplified direct inelastic strut-and-tie model (S-DISTM), a reinforced concrete member is idealized with compression strut of concrete and tension tie of reinforcing bars. For the strut and tie elements, elastic stiffness or secant stiffness is used according to the design strategy intended by engineer. To define the failure criteria of the strut and tie elements, concrete crushing and reinforcing bar fracture were considered. The proposed method was applied to inelastic design of various reinforced concrete members including deep beam, coupling beam, and shear wall. The design results were compared with the properties and the deformation capacities of the test specimens.

Strength of Reinforced Concrete Members in Pure Torsion (순수(純粹)비틀림을 받는 철근(鐵筋)콘크리트 부재(部材)의 내력(耐力))

  • Shin, Hyun Mook;Kim, Eun Kyun;Kim, Seon Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.125-133
    • /
    • 1988
  • To establish the rational design method, it is very important that predict accurately load-deformation response on reinforced concrete members. Torque-twist curves of reinforced concrete members in pure torsion were proposed recently by Collins and Hsu, etc. But, it is found that torsional strength of reinforced concrete members based on Hsu's theory is underestimated in the over-all load region except the ultimate state. In this paper, an attempt is made to present the higher-precision of torsional strength on arbitrary loading condition. For this purpose, constitutive equations are derived from which an estimate can be made of the torsional behavior of reinforced concrete members under the pure torsion. Tension stiffness of concrete in both the cracked and uncracked state have been considered. A softening effect that reduces the strength of the concrete by the diagonal cracking of concrete have been appropriately deliberated. Particularly, the experiments was done with 14 test beams to investigate the validity of theoretical analysis.

  • PDF

Ductility of Circular Hollow Columns with Internal Steel Tube (강관 코아 합성 중공 기둥의 연성 거동 연구)

  • 강영종;한승룡;박남회
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Statistical Analysis of Resistance of Reinforced Concrete Members (철근콘크리트 부재강도의 확률적 특성 분석)

  • 김상효;배규웅;박흥석
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.117-123
    • /
    • 1991
  • It is widely recognized that the strengths of reinforced concrete members have random characteristics due to the variability of the mechanical properties of concrete and steel, the dimensional error as well as incorrect placement of reinforcing bars. Statistical models of the variabilities of strengths of reinforced concrete members, therefore, need to be developed to evaluate the safety level implied in current practices. Based on the probabilistic models of basic factors affecting the R.C. member strengths, in this study, the probabilistic characteristics of member resistance have been studied through Monte Carlo simulation.

Microplane Model for RC Planar Members in Tension-Compression (인장-압축상태의 철근콘크리트 면 부재를 위한 미소면 모델)

  • 박홍근;김학준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.279-284
    • /
    • 2000
  • The existing microplane models for concrete ust three-dimensional spherical microplanes even in the analyses for two-dimensional members. Also, they can not describe accurately the post-cracking behavior of reinforced concrete in tension-compression. In this study, a new microplane model that is appropriate for the analyses of reinforced concrete planar members was developed to complement these disadvantages of the existing models. The proposed microplane model uses disk microplanes instead of the existing spherical ones. This new model is effective in numerical analysis because it uses less number of microplanes and two-dimensional stresses. Also, in this microplane model a concept of strain boundary was introduced to describe compressive behavior of reinforced concrete in tension-compression.

  • PDF

Prediction of Crack Width and Bond Stress-Slip Relationships in Reinforced Concrete Members (철근콘크리트 부재의 부착응력-미끌림 관계와 균열폭 예측)

  • Kim Jang Hyun;Lee Ki Yeo;Kim Dae Joong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.193-196
    • /
    • 2005
  • This study deals with the estimation of the crack width by stabilized cracking considering bond-slip relationships in reinforced concrete members. The proposed method utilizes the sameness of tension stiffening and a change of bond-slip relationships because of concrete's splitting. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental date and the major code spcifications. The analytical results of analysis presented in this study indicate that the proposed method can be effectively estimated the crack width of the reinforced concrete members.

  • PDF

Shear performance assessment of steel fiber reinforced-prestressed concrete members

  • Hwang, Jin-Ha;Lee, Deuck Hang;Park, Min Kook;Choi, Seung-Ho;Kim, Kang Su;Pan, Zuanfeng
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.825-846
    • /
    • 2015
  • In this study, shear tests on steel fiber reinforced-prestressed concrete (SFR-PSC) members were conducted with test parameters of the concrete compressive strength, the volume fraction of steel fibers, and the level of effective prestress. The SFR-PSC members showed higher shear strengths and stiffness after diagonal cracking compared to the conventional prestressed concrete (PSC) members without steel fibers. In addition, their shear deformational behavior was measured using the image-based non-contact displacement measurement system, which was then compared to the results of nonlinear finite element analyses (NLFEA). In the NLFEA proposed in this study, a bi-axial tensile behavior model, which can reflect the tensile behavior of the steel fiber-reinforced concrete (SFRC) in a simple manner, was introduced into the smeared crack truss model. The NLFEA model proposed in this study provided a good estimation of shear behavior of the SFRPSC members, such as the stiffness, strengths, and failure modes, reflecting the effect of the key influential factors.

Design of Reinforced Concrete Members for Serviceability Based on Utility Theory

  • Lee, Young Hak;Kim, Sang Bum
    • Architectural research
    • /
    • v.7 no.2
    • /
    • pp.61-68
    • /
    • 2005
  • A methodology for design of reinforced concrete members for serviceability in general and deflection control in particular is presented based on application of utility theory. The approach is based on minimizing total cost including both initial construction and cost of failure considering variability in structural behavior and various forms of serviceability loss function. The method is demonstrated for the case of a simply supported slab for example.

Seismic performance assessment of steel reinforced concrete members accounting for double pivot stiffness degradation

  • Juang, Jia-Lin;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.441-455
    • /
    • 2008
  • This paper presents an effective hysteretic model for the prediction and evaluation of steel reinforced concrete member seismic performance. This model adopts the load-deformation relationship acquired from monotonic load tests and incorporates the double-pivot behavior of composite members subjected to cyclic loads. Deterioration in member stiffness was accounted in the analytical model. The composite member performance assessment control parameters were calibrated from the test results. Comparisons between the cyclic load test results and analytical model validated the proposed method's effectiveness.