• Title/Summary/Keyword: reguloid operators

Search Result 3, Processing Time 0.014 seconds

WEYL'S THEOREM FOR ISOLOID AND REGULOID OPERATORS

  • Kim, An-Hyun;Yoo, Sung-Uk
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.179-188
    • /
    • 1999
  • In this paper we find some classes of operators for which Weyl`s theorem holds. The main result is as follows. If T$\in$L(\ulcorner) satisfies the following: (ⅰ) Either T or T\ulcorner is reduced by each of its eigenspaces; (ⅱ) Weyl`s theorem holds for T; (ⅲ) T is isoloid, then for every polynomial p, Weyl`s theorem holds for p(T).

  • PDF

CONDITIONS IMPLYING NORMALITY

  • Kim, An-Hyun
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • In this paper we find some classes of operators implying normaity. The main result is as follows. If T is restriction-convexoid and is reduced by each of its eigenspaces corresponding to isolated eigenvalues, which is a class including hyponormal operators, and if $\sigma$(T) is countable then T is diagonal and normal.

  • PDF

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

  • Rashid, Mohammad Hussein Mohammad;Noorani, Mohd Salmi Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.77-95
    • /
    • 2012
  • For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If $T^*$ is algebraically (p, k)-quasihyponormal, then a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$, where $Hol({\sigma}(T))$ is the space of all functions that analytic in an open neighborhoods of ${\sigma}(T)$ of T. (c) If $T^*$ is algebraically (p, k)-quasihyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum $\sigma_{SBF_+^-}(T)$, and for left Drazin spectrum ${\sigma}_{lD}(T)$ for every $f{\in}Hol({\sigma}T))$.