References
- Proc. Amer. Math. Soc. v.34 On the Weyl spectrum of a Hilbert space operator J. Baxley
- Michigan Math. J. v.16 An extension of Weyl's theorem to a class of not necessarily normal operators S.K. Berberian
- Indiana Univ. Math. J. v.20 The Weyl's spectrum of anl operators S.K. Berberian
- Michigan Math. J. v.13 Weyl's theorem for nonnormal operators L.A. Coburn
- Proc. Amer. Math. Sco. v.25 The structure and asymptotic behaviour of polynomially compact operators F. Gilfeather
- Proc. Royal Irish Acad v.85A no.2 Fredholm, Weyl and Browder theory R.E. harte
- Invertibility and singularity for bounded linear operators R.E. Harte
- J. Operator Theory v.30 The punctured nieghbourhood theorem for incomplete spaces R.E. Harte;W. Y. Lee
- Trans. Amer. Math. Soc. v.349 Another note on Weyl's theorem R.E. Harte
- Rev. Roum. Math. Pures Appl. v.13 Weyl's theorem for a class of operators V. Istratescu
- Math. Japon. v.39 On Weyl's theorem W.Y. Lee;H.Y. Lee
- Glasgow Math. J. v.38 A spectral mapping theorem for the Weyl spectrum W.Y. Lee;S.H. Lee
- Illinois J. Math. v.18 On the Weyl spectrum K.K. Oberai
- Illinois J. Math. v.21 On the Weyl spectrum(Ⅱ) K.K. Oberai
- Amer. J. Math. v.93 A structure theorem for polynomially compact operators C.L. Olsen
- Indian Acad. Sci.(Math. Sci.) v.91 Weyl's theorem and thin spectra S. Prasanna
- Rend. Circ. Mat. Palermo v.27 Uber beschrankte quadratische Formen, dern Differenz vollsteig ist H. Weyl