• Title/Summary/Keyword: regulatory factor

Search Result 750, Processing Time 0.034 seconds

Effects of Steaming Process on Liriopis Tuber to Antioxidant Activities and Hyperlipidemia Induced Rats. (맥문동(麥門冬)의 증숙(蒸熟)에 따른 항산화 효능 및 고지혈증 유발 흰쥐에 대한 효능 연구)

  • Ku, Garam;Lee, Hyun-In;Kim, SuJi;Shin, Mi-Rae;Lee, AhReum;Park, Hae-Jin;Roh, Seong-Soo;Seo, Young Bae
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.89-103
    • /
    • 2018
  • Objectives : This study is aimed to compare the changes in Antioxidative capacity of Liriopis Tuber by steaming process and to compare the effects in hyperlipidemia induced rats fed high cholesterol diet between Simvastatin and Liriopis Tuber by steaming process. Methods : The SD rats were divided into six groups: normal diet (Nor), high cholesterol diet (Veh), high cholesterol diet plus Simvastatin 5 mg/kg (Sim), high cholesterol diet plus LT0 extract 200 mg/kg (LT0), high cholesterol diet plus LT6 extract 200 mg/kg (LT6) and high cholesterol diet plus LT9 extract 200 mg/kg (LT9). We compared the total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL) contents and reactive oxygen species (ROS) from each serums. Protein expression in liver tissues related to antioxidant and cholesterol was analyzed. Results : The Antioxidant activity of Liriopis Tuber increased by steaming process. In vivo, TC, TG, LDL-c, atherogenic index (AI) and cardiac risk factor (CRF) decreased and HDL-c increased with increasing steaming frequency. aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and blood urea nitrogen (BUN) decreased with increasing steaming frequency. ROS decreased only in LT9, and SOD, catalase and glutathione peroxidase (GPx) increased with increasing steaming frequency. phospho-AMP-activated protein kinase (p-AMPK) increased and sterol regulatory element-binding protein 2 (SREBP-2), Phospho-Acetyl-CoA Carboxylase (p-ACC) and HMG-CoA reductase (HMGCR) decreased with increasing steaming frequency. Liver staining showed a decrease in hepatic fat accumulation of LT9. LT9 showed significant results in all experiments. Conclusions : LT9 showed significance of anti-lipid effect and improved fatty liver of hyperlipemia induced rats fed on high cholesterol diet, In conclusion, LP9 can be effectively used for the treatment of hyperlipidemia.

Inhibitory Effect of Extract of Trogopterorum Faeces on the Production of Inflammatory Mediaters (오령지 추출물의 염증성 세포활성물질 억제효과)

  • Kim, Byung-Jin;Ham, Kyung-Wan;Park, Kyung-Bae;Kim, Dae-Hyeon;Jo, Beom-Yeon;Cho, Chang-Re;Cho, Gil-Hwan;Bae, Gi-Sang;Park, Kyoung-Chel;Koo, Bon-Soon;Kim, Min-Sun;Song, Ho-Joon;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.24 no.3
    • /
    • pp.153-160
    • /
    • 2009
  • Objectives : The purpose of this study was to investigate the anti-inflammatory effects of extract from Trogopterorum Faeces (TF) on the RAW 264.7 cells. Methods : To prove the TF's anti-inflammatory effects, we investigated nitric oxide (NO) production and own cell viability. We examined the cytokine productions on lipopolysacchride (LPS)-induced RAW 264.7 cells and also cellular regulatory mechanisms. Results : TF does not have any cytotoxic effect. TF reduced LPS-induced NO production, interleukin (IL)-1b, IL-6, IL-10 and tumor necrosis factor-a (TNF-a) in RAW 264.7 cells. TF inhibited the activation of mitogen-activated protein kinases (MAPKs) such as p38, extracelluar signal-regulated kinase (ERK 1/2) and c-Jun NH2-terminal kinase (JNK) and also the degradation of inhibitory kappa B a (Ik-Ba) in the LPS-stimulated RAW 264.7 cells. TF reduced the serum levels of IL-1b, IL-6, TNF-a. The survival rate of LPS-induced endotoxin shock was increased by TF administration. Conclusions : TF down-regulated LPS-induced NO and cytokines production, which could provide a clinical basis for anti-inflammatory properties.

IKKγ Facilitates the Activation of NF-κB by Hsp90 (Hsp90에 의한 NF-κB의 활성화를 촉진하는 IKKγ의 역할)

  • Lee, Jeong Ah;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.241-248
    • /
    • 2022
  • NF-κB acts as a critical transcription factor in inflammation and innate immunity, and it is also closely involved in cell survival and tumorigenesis via induction of anti-apoptotic genes. In these processes, NF-κB cooperates with multiple other signaling molecules and pathways, and although many studies have demonstrated that Hsp90 regulates NF-κB activity, the exact mechanism is unclear. In this study, we investigated the relationship between Hsp90 and IKKγ in the regulation of NF-κB using expression plasmids of IKK complex components. Wild-type and deletion mutants of IKKγ were expressed together with Hsp90, and the combined regulatory effect of Hsp90 and IKKγ on NF-κB activation was assayed. The results show that Hsp90 activates NF-κB by promoting the phosphorylation and degradation of IκBα and that activation of NF-κB by NIK and LPS was increased by Hsp90. IKKγ elevated the effect of Hsp90 on NF-κB activation by increasing phosphorylation and degradation of IκBα. The positive regulation on NF-κB by Hsp90 and IKKγ was also proved in analysis with IKKβ-EE, the constitutively active form of IKKβ. In experiments with the deletion mutants of IKKγ, the N-terminal IKKβ binding domain, C-terminal leucine zipper, and zinc finger domains of IKKγ were found not necessary for the positive regulation of NF-κB activity. Additionally, the expression of pro-inflammatory cytokines was synergistically elevated by Hsp90 and IKKγ. These results indicate that inhibiting the interaction between Hsp90 and IKKγ is a possible strategic method for controlling NF-κB and related diseases.

Anti-fatigue effect of tormentic acid through alleviating oxidative stress and energy metabolism-modulating property in C2C12 cells and animal models

  • Ho-Geun Kang;Jin-Ho Lim;Hee-Yun Kim;Hyunyong Kim;Hyung-Min Kim;Hyun-Ja Jeong
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.670-681
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS: In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS: TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS: TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.

Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways

  • Jianzeng Liu ;Xiaohao Xu ;Jingyuan Zhou;Guang Sun ;Zhenzhuo Li;Lu Zhai ;Jing Wang ;Rui Ma ;Daqing Zhao;Rui Jiang ;Liwei Sun
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.714-725
    • /
    • 2023
  • Background: Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods: In vitro and in vivo impact of phenolic acid monomers were assessed. Results: SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion: P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.

A Study on the Policy Direction of the Online Platform Industry: Focusing on PEST-SWOT-AHP Analysis for Scholars and Researchers (온라인 플랫폼 산업의 정책 방향성 연구: 학자 및 연구자 대상 PEST-SWOT-AHP 분석을 중심으로)

  • Sun-Ho Park
    • Journal of Industrial Convergence
    • /
    • v.22 no.5
    • /
    • pp.1-10
    • /
    • 2024
  • This study proposes a developmental policy direction for the online platform industry, moving away from the regulatory-centered discussions that have predominated thus far. To offer policy directions, the PEST-SWOT-AHP analysis model was employed. The study first categorizes the issues of the domestic online platform industry into political, economic, social, and technological aspects, which are then further categorized into 16 strengths, weaknesses, opportunities, and threats. The relative importance among these factors was measured, leading to the derivation of four final strategies. The analysis indicates that policy directions should prioritize addressing weaknesses, with 'improving regulations that hinder innovation' being the most important factor across all categories, while technological factors were consistently rated highly in importance apart from this. Accordingly, the policy direction for the domestic online platform industry suggests avoiding excessive regulation and instead emphasizing policy support centered around technological development. This study is significant in that it presents a macroscopic developmental direction for online platform policies that have not been discussed in existing academic research, and it provides professional and objective indicators through consensus among scholars and researchers. In the future, it is hoped that research will continue to propose detailed policy strategies and implementation systems based on a macroscopic perspective.

Exploratory Study on Enhancing Cyber Security for Busan Port Container Terminals (부산항 컨테이너 터미널 사이버 보안 강화를 위한 탐색적 연구)

  • Do-Yeon Ha;Yul-Seong Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.437-447
    • /
    • 2023
  • By actively adopting technologies from the Fourth Industrial Revolution, the port industry is trending toward new types of ports, such as automated and smart ports. However, behind the development of these ports, there is an increasing risk of cyber security incidents and threats within ports and container terminals, including information leakage through cargo handling equipment and ransomware attacks leading to disruptions in terminal operations. Despite the necessity of research to enhance cyber security within ports, there is a lack of such studies in the domestic context. This study focuses on Busan Port, a representative port in South Korea that actively incorporates technology from the Fourth Industrial Revolution, in order to discover variables for improving cyber security in container terminals. The research results categorized factors for enhancing cyber security in Busan Port's container terminals into network construction and policy support, standardization of education and personnel training, and legal and regulatory factors. Subsequently, multiple regression analysis was conducted based on these factors, leading to the identification of detailed factors for securing and enhancing safety, reliability, performance, and satisfaction in Busan Port's container terminals. The significance of this study lies in providing direction for enhancing cyber security in Busan Port's container terminals and addressing the increasing incidents of cyber security attacks within ports and container terminals.

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

Variations in algal distribution and diversity in oceanic island and inland freshwater reservoirs : a step toward for securing diverse freshwater resources (섬 및 내륙 담수지 내 조류 분포 및 다양성 변화 조사 : 다양한 담수원 확보를 위한 첫걸음)

  • Jong Myong Park;Yoo-Kyeong Kim;A Hyun Lee;Hee-Jeong Lee;Yeon-Ja Koh;Nam-Soo Jun;Wan-Soon Kwack
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • This study analyzed the distribution, diversity, and density variation of algal clusters in a freshwater reservoir from an oceanic island and a traditional inland water system to gain insights on future marine freshwater resource management. In the Paldang water system (Han River), despite the upstream Paldang Dam and the downstream Jamsil underwater reservoir being in the same meteorological zone, their algae density patterns varied inversely. The distinct algal cluster structure (diversity/dominance) of Paldang was altered in the downstream reservoir, suggesting that physical devices aid algae management in traditional water systems. In contrast, 24 out of 35 genera (63.2%) identified in the Jeolgol Reservoir (Baeknyeong Island) were unique, lacking regulatory mechanisms, and existing in a complex ecotone. The desmid Chlorophyceae Cosmarium, adapted to higher photosynthetic stress and low temperatures, dominated in January (38.04%) and August (86.45%) during the periods of extreme photosynthetic stress. Jeolgol's annual algal cluster structure (H' 2.097; D 0.259; S' 35) demonstrated higher stability than Paldang (H' 1.125; D 0.448; S' 13) and the Jamsil underwater reservoir (H' 1.078; D 0.469; S' 12), maintaining an H' above 1.5 even during midwinters. No evidence of TN/TP inflow from surrounding soils was observed, even during torrential rainfalls, with phosphorus being the limiting factor for algal growth. TOC, BOD, chlorophyll-a, and turbidity peaked during Cosmarium bloom. Future climate change is expected to cause fluctuations in algal clusters and related water quality factors. The complex transitional nature of the Jeolgol Reservoir, its algal diversity, and the interspecies interactions contribute to the high stability of its algal community.

Beneficial Effects of Daebong Persimmon against Oxidative Stress, Inflammation, and Immunity in vivo (대봉감의 항산화, 항염증 및 면역증강 효과)

  • Lee, Hee Jae;Lim, So Young;Kang, Min-Gyung;Park, Jeongjin;Chung, Hyun-Jung;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.491-496
    • /
    • 2015
  • The purpose of this study was to assess the antioxidant, anti-inflammatory, and immuno-enhancing effects of Daebong persimmon (DP) and Bansi (BS) in vivo. Two types of astringent persimmons (DP and BS) were used for this experiment. C57BL/6J mice were assigned to the following groups: 1) lean control, 2) high-fat diet control (HF), 3) A region DP (3% wt/wt) with HF diet (A-DP), 4) B region DP with HF diet (B-DP), 5) C region DP with HF diet (C-DP), 6) D region BS with HF diet (D-BS), and 7) E region BS with HF diet (E-BS). All mice were sacrificed after 4 weeks of treatment, after which blood and tissues were collected. Antioxidant enzyme activities, inflammatory markers, and immune factors were evaluated. DP and BS treatments did not alter food intake or body weight, compared with HF. Administration of B-DP increased catalase activities in serum. Hepatic levels of malondialdehyde, a product of lipid peroxidation, were significantly lower in A-DP mice than in the HF group. A-DP had down-regulatory effects against inflammation induced by high-fat diet feeding, as shown by significant reduction of interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$. Additionally, A-DP treatment exerted an immuno-stimulatory effect, as shown by increasing levels of immunoglobulin G. DP treatment improved the level of insulin-like growth factor-1. These results indicate that DP has beneficial health effects on oxidative stress, inflammation, and immunity in vivo.