• Title/Summary/Keyword: regional climate change

Search Result 570, Processing Time 0.029 seconds

Evaluation of Temperature and Precipitation on Integrated Climate and Air Quality Modeling System (ICAMS) for Air Quality Prediction (대기질 예측을 위한 기후·대기환경 통합모델링시스템 (ICAMS)의 기온 및 강수량 예측 능력 평가)

  • Choi, Jin-Young;Kim, Seung-Yeon;Hong, Sung-Chul;Lee, Jae-Bum;Song, Chang-Keun;Lee, Hyun-Ju;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.615-631
    • /
    • 2012
  • This study provides an evaluation for capability of Integrated Climate and Air quality Modeling System (ICAMS) on future regional scale climate projection. Temperature and precipitation are compared between ground-level observation data and results of regional models (MM5) for the past 30 years over the Korean peninsula. The ICAMS successfully simulates the local-scale spatial/seasonal variation of the temperature and precipitation. The probability distribution of simulated daily mean and minimum temperature agree well with the observed patterns and trends, although mean temperature shows a little cold bias about $1^{\circ}C$ compared to observations. It seems that a systematic cold bias is mostly due to an underestimation of maximum temperature. In the case of precipitation, the rainfall in winter and light rainfall are remarkably simulated well, but summer precipitation is underestimated in the heavy rainfall phenomena of exceeding 20 mm/day. The ICAMS shows a tendency to overestimate the number of washout days about 7%. Those results of this study indicate that the performance of ICAMS is reasonable regarding to air quality predication over the Korean peninsula.

Estimation of Regional Water Balance in Various Climate Change Scenarios (기후변화 시나리오에 따른 지역 물수지 추정)

  • 김만규
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.53-65
    • /
    • 1999
  • It is only possible by Physical based Water Balance Models such as $BROOK_{TOP}$ developed by me to estimate regional water balances caused by changes of regional ecosystem, which result in climate change, change of vegetation due to climate change, artificial landuse change, etc. This study estimates regional water balances of mid-north agricultural and forest regions in Germany using $BROOK_{TOP}$-Water Balance Model with climate change scenarios developed by PIK in Germany and GCM Scenarios developed by Praha University in Czech. Developing Water Resource Change Estimation System such as this study for global warming with considering climate, surface and underground conditions provides the basis of system development for surface-, groundwater-, cultivation-, ecosystem-, natural emergency-management, landuse and regional planing.

  • PDF

Simulation of the GHG Emissions Impact on Climate Change from Radish Field (기후변화에 따른 무 밭의 온실가스 배출량 모의)

  • Shin, Min Hwan;Lee, Su In;Jang, Jeong Ryeol;Shin, Jae Young;Park, Youn Shik;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.101-112
    • /
    • 2015
  • This study was conducted to predict greenhouse gas (GHG) emission from a radish field by future climate change scenario. A radish field located at Chuncheon-si Gangwon-do was selected, and A1B Special Report on Emission Scenario (SRES) of the IPCC (Intergovernmental panel on climate change) was applied to simulate the future potential climate change. Rainfall and temperature data were predicted to be increased by 8.4 % and 1.9 % in 2040s, 35.9 % and 27.0 % in 2060s, 19.2 % and 30.8 % in 2090s, respectively, compared to the climate data in 2010s. The $N_2O$, $CO_2$, and $CH_4$ emission were estimated to be increased by 0.4 up to 2.4 kg/ha/yr, by 500.5 up to 734.5 kg/ha/year, and by 29.4 up to 160.4 kg/ha/yr, which were resulted from the global warming potential (GWP) of 14.5~21.7 $CO_2$/ha/year caused by the amount changes of rainfall, temperature, manure amendment, and fertilizer applied in fields. One distinct feature of the study result was that the changes of $N_2O-N$, $CH_4-C$ and $CO_2-C$ with future potential climate change simulation were varied by soil texture. Therefore it was concluded that there is a need to apply appropriate amount of manure amendment needs and to consider soil texture as well.

Past and Future Regional Climate Change in Korea

  • Kwon, Won-Tae;Park, Youngeun;Min, Seung-Ki;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.161-161
    • /
    • 2003
  • During the last century, most scientific questions related to climate change were focused on the evidence of anthropogenic global warming (IPCC, 2001). There are robust evidences of warming and also human-induced climate change. We now understand the global, mean change a little bit better; however, the uncertainties for regional climate change still remains large. The purpose of this study is to understand the past climate change over Korea based on the observational data and to project future regional climate change over East Asia using ECHAM4/HOPE model and MM5 for downscaling. There are significant evidences on regional climate change in Korea, from several variables. The mean annual temperature over Korea has increased about 1.5∼$1.7^{\circ}C$ during the 20th century, including urbanization effect in large cities which can account for 20-30% of warming in the second half of the 20th century. Cold extreme temperature events occurred less frequently especially in the late 20th century, while hot extreme temperature events were more common than earlier in the century. The seasonal and annual precipitation was analyzed to examine long-term trend on precipitation intensity and extreme events. The number of rainy days shows a significant negative trend, which is more evident in summer and fall. Annual precipitation amount tends to increase slightly during the same period. This suggests an increase of precipitation intensity in this area. These changes may influence on growing seasons, floods and droughts, diseases and insects, marketing of seasonal products, energy consumption, and socio-economic sectors. The Korean Peninsular is located at the eastern coast of the largest continent on the earth withmeso-scale mountainous complex topography and itspopulation density is very high. And most people want to hear what will happen in their back yards. It is necessary to produce climate change scenario to fit forhigh-resolution (in meteorological sense, but low-resolution in socio-economic sense) impact assessment. We produced one hundred-year, high-resolution (∼27 km), regional climate change scenario with MM5 and recognized some obstacles to be used in application. The boundary conditions were provided from the 240-year simulation using the ECHAM4/HOPE-G model with SRES A2 scenario. Both observation and simulation data will compose past and future regional climate change scenario over Korea.

  • PDF

Study on Priorities of Regional Climate Change Policy (기후변화정책 우선순위 연구)

  • Hwang, Eunjoo;Choi, Yun Hyeok;Kim, Jong Dae
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.589-601
    • /
    • 2016
  • This study aims to analyze the priority of regional climate change policy utilizing AHP (analytic hierarchy process) at the area of Metropolitan City of Incheon. It derives four factors at first hierarchical level, at which level the analysis of pair-wise comparison indicates that industrial sector, energy sector, climate change response, and green culture policy are considered important in that order. It also ends up with sixteen factors at second level. The result of comparison analysis between all factors reveals that investment promotion in green technology R&D is considered the most significant factor of all, followed by establishment of green enterprise support system, electricity-efficiency enhancement support project and build-up of green culture policy governance. The result implies that diverse promotional policies have to incorporate business, institutional, and cultural aspects for sustainable climate change policy of regions. The contribution of this study is that it highlights the need to include regional characteristics in deciding priority among policy options for them to be effective.

On the Drought over Korea using the regional climate change simulation (지역 기후 변화 모의 자료를 이용한 한반도 가뭄 지수 분석)

  • Boo, Kyung-On;Kwon, Won-Tae;Baek, Hee-Jeong;Oh, Jai-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.875-877
    • /
    • 2004
  • We analyze the changes of the Palmer Drought Severity Index (PDSI) over Korea to assess the regional climate change associated with global warming. For the regional-scale analysis, we used the MM5 simulation in 27 km horizontal resolution for the period of 1971-2100, which is driven by ECHAM4/HOPE-G under the greenhouse gas omission scenario. The downscaled climate variables capture improved regional features consistent with the observation. Based on the simulation, we investigated the temporal and spatial distributions of PDSI over Korea. The area-averaged PDSI is expected to decrease in global warming. Considering the horizontal distribution of climate change, the negative peak values of PDSI anomalies appear in the southern part of Korea.

  • PDF

An Exploratory Study on the Cause of the Poor Performance of Climate Change in Korea (우리나라 기후변화 대응의 저성과 원인에 대한 탐색적 연구 - 우리나라 CCPI(Climate Change Performance Index) 사례 중심 -)

  • Kim, Yeongsin;Kim, SeongHeon;Lee, Jieun;Song, Youngchul
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • The relevant ministries, including the Ministry of Environment in Korea, provided Post-2020 Long-term Mitigation Target and Implementation Plan. The plan consisted of four Business As Usual (BAU) reduction levels by 14.7%, 19.2%, 25.7%, and 31.3% until 2030. The Korean government finalized the mitigation target of 37%. But all the initial alternatives were below the goal, 30% from BAU, that has been promised to the international community as well as set out in the Framework Act on Low Carbon Green Growth. In order to achieve a specific goal, performance management should pursue "Justify doing the right things." Otherwise, performance management would not work properly. According to Kingdon's Policy Stream Framework, abnormal alternatives are difficult to be presented as scenarios because alternative building should focus on the role of the need to adhere to the basic principles and professionals. Such a result is possible only when the policy actors does not balance themselves. Performance management statistics has been analyzed by 6 years CCPI data since 2011, taking into account the impact after enactment. This study also has been complemented by a variety of sources, including the media, documents, and artifacts during the period. As a result, raising awareness about climate change was analyzed as one of the solutions because the climate change issue affects the normal performance management throughout the life of the people to stay linked to the environment.

Prediction of Land-cover Change Based on Climate Change Scenarios and Regional Characteristics using Cluster Analysis (기후변화 시나리오에 따른 미래 토지피복변화 예측 및 군집분석을 이용한 지역 특성 분석)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.31-41
    • /
    • 2011
  • This study was conducted to predict future land-cover changes under climate change scenarios and to cluster analysis of regional land-cover characteristics. To simulate the future land-cover according to climate change scenarios - A1B, A2, and B1 of the Special Report on Emissions Scenarios (SRES), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation with socioeconomic and biophysical driving factors. Gyeonggi-do were selected as study areas. The simulation results from 2010 to 2040 suggested future land-cover changes under the scenario conditions. All scenarios resulted in a gradual decrease in paddy area, while upland area continuously increased. A1B scenario showed the highest increase in built-up area, but all scenarios showed only slight changes in forest area. As a result of cluster analysis with the land-cover component scores, 31 si/gun in Gyeonggi-do were classified into three clusters. This approach is expected to be useful for evaluating and simulating land-use changes in relation to development constraints and scenarios. The results could be used as fundamental basis for providing policy direction by considering regional land-cover characteristics.

Comparative Analysis of Climate Change Adaptation-related Recognition between Public Officials and Citizens - Focused on ChungCheongBukDo-Province - (기후변화 적응에 대한 공무원 및 도민의 인식 비교 분석 - 충청북도를 중심으로 -)

  • Ban, Yong Un;Go, In Chul;Baek, Jong In
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.4
    • /
    • pp.19-28
    • /
    • 2017
  • This study has intended to perform comparative analysis of climate change adaptation-related recognition between public officials and citizens in ChungCheongBukDo-Province, Korea. To reach this goal, we identified difference between the two groups by prioritizing target group's adaptation policies for climate change, and analyzing climate change adaptation-related recognition in each sector. Climate change adaptation policies can have great policy utility when the boundaries between policy makers and detainees are blurred. Therefore, this study has suggested some measures to reduce the recognition gaps between the target groups by analyzing the characteristics of the groups.

Implications of Impacts of Climate Change on Forest Product Flows and Forest Dependent Communities in the Western Ghats, India

  • Murthy, Indu K.;Bhat, Savithri;Sathyanarayan, Vani;Patgar, Sridhar;M., Beerappa;Bhat, P.R.;Bhat, D.M.;Gopalakrishnan, Ranjith;Jayaraman, Mathangi;Munsi, Madhushree;N.H., Ravindranath;M.A., Khalid;M., Prashant;Iyer, Sudha;Saxena, Raghuvansh
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.189-200
    • /
    • 2014
  • The tropical wet evergreen, tropical semi evergreen and moist deciduous forest types are projected to be impacted by climate change. In the Western Ghats region, a biodiversity hotspot, evergreen forests including semi evergreen account for 30% of the forest area and according to climate change impact model projections, nearly a third of these forest types are likely to undergo vegetation type change. Similarly, tropical moist deciduous forests which account for about 28% of the forest area are likely to experience change in about 20% of the area. Thus climate change could adversely impact forest biodiversity and product flow to the forest dependent households and communities in Uttara Kannada district of the Western Ghats. This study analyses the distribution of non-timber forest product yielding tree species through a network of twelve 1-ha permanent plots established in the district. Further, the extent of dependence of communities on forests is ascertained through questionnaire surveys. On an average 21% and 28% of the tree species in evergreen and deciduous forest types, respectively are, non-timber forest product yielding tree species, indicating potential high levels of supply of products to communities. Community dependence on non-timber forest products is significant, and it contributes to Rs. 1199 and Rs. 3561/household in the evergreen and deciduous zones, respectively. Given that the bulk of the forest grids in Uttara Kannada district are projected to undergo change, bulk of the species which provide multiple forest products are projected to experience die back and even mortality. Incorporation of climate change projections and impacts in forest planning and management is necessary to enable forest ecosystems to enhance resilience.