• 제목/요약/키워드: region-based segmentation

검색결과 559건 처리시간 0.022초

Small Object Segmentation Based on Visual Saliency in Natural Images

  • Manh, Huynh Trung;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.592-601
    • /
    • 2013
  • Object segmentation is a challenging task in image processing and computer vision. In this paper, we present a visual attention based segmentation method to segment small sized interesting objects in natural images. Different from the traditional methods, we first search the region of interest by using our novel saliency-based method, which is mainly based on band-pass filtering, to obtain the appropriate frequency. Secondly, we applied the Gaussian Mixture Model (GMM) to locate the object region. By incorporating the visual attention analysis into object segmentation, our proposed approach is able to narrow the search region for object segmentation, so that the accuracy is increased and the computational complexity is reduced. The experimental results indicate that our proposed approach is efficient for object segmentation in natural images, especially for small objects. Our proposed method significantly outperforms traditional GMM based segmentation.

Enhanced Graph-Based Method in Spectral Partitioning Segmentation using Homogenous Optimum Cut Algorithm with Boundary Segmentation

  • S. Syed Ibrahim;G. Ravi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.61-70
    • /
    • 2023
  • Image segmentation is a very crucial step in effective digital image processing. In the past decade, several research contributions were given related to this field. However, a general segmentation algorithm suitable for various applications is still challenging. Among several image segmentation approaches, graph-based approach has gained popularity due to its basic ability which reflects global image properties. This paper proposes a methodology to partition the image with its pixel, region and texture along with its intensity. To make segmentation faster in large images, it is processed in parallel among several CPUs. A way to achieve this is to split images into tiles that are independently processed. However, regions overlapping the tile border are split or lost when the minimum size requirements of the segmentation algorithm are not met. Here the contributions are made to segment the image on the basis of its pixel using min-cut/max-flow algorithm along with edge-based segmentation of the image. To segment on the basis of the region using a homogenous optimum cut algorithm with boundary segmentation. On the basis of texture, the object type using spectral partitioning technique is identified which also minimizes the graph cut value.

신경 회로망을 이용한 자궁 경부 세포진 영상의 영역 분할에 관한 연구 (A Study on Segmentation of Uterine Cervical Pap-Smears Images Using Neural Networks)

  • 김선아;김백섭
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권3호
    • /
    • pp.231-239
    • /
    • 2001
  • This paper proposes a region segmenting method for the Pap-smear image. The proposed method uses a pixel classifier based on neural network, which consists of four stages : preprocessing, feature extraction, region segmentation and postprocessing. In the preprocessing stage, brightness value is normalized by histogram stretching. In the feature extraction stage, total 36 features are extracted from $3{\times}3$ or $5{\times}5$ window. In the region segmentation stage, each pixel which is associated with 36 features, is classified into 3 groups : nucleus, cytoplasm and background. The backpropagation network is used for classification. In the postprocessing stage, the pixel, which have been rejected by the above classifier, are re-classified by the relaxation algorithm. It has been shown experimentally that the proposed method finds the nucleus region accurately and it can find the cytoplasm region too.

  • PDF

A Region Based Approach to Surface Segmentation using LIDAR Data and Images

  • Moon, Ji-Young;Lee, Im-Pyeong
    • 한국측량학회지
    • /
    • 제25권6_1호
    • /
    • pp.575-583
    • /
    • 2007
  • Surface segmentation aims to represent the terrain as a set of bounded and analytically defined surface patches. Many previous segmentation methods have been developed to extract planar patches from LIDAR data for building extraction. However, most of them were not fully satisfactory for more general applications in terms of the degree of automation and the quality of the segmentation results. This is mainly caused from the limited information derived from LIDAR data. The purpose of this study is thus to develop an automatic method to perform surface segmentation by combining not only LIDAR data but also images. A region-based method is proposed to generate a set of planar patches by grouping LIDAR points. The grouping criteria are based on both the coordinates of the points and the corresponding intensity values computed from the images. This method has been applied to urban data and the segmentation results are compared with the reference data acquired by manual segmentation. 76% of the test area is correctly segmented. Under-segmentation is rarely founded but over-segmentation still exists. If the over-segmentation is mitigated by merging adjacent patches with similar properties as a post-process, the proposed segmentation method can be effectively utilized for a reliable intermediate process toward automatic extraction of 3D model of the real world.

영역성장과정에서 다중 조건으로 병합하는 워터쉐드 영상분할 (Watershed Segmentation with Multiple Merging Conditions in Region Growing Process)

  • 장종원;윤영우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.59-62
    • /
    • 2002
  • Watershed Segmentation with Multiple Merging Conditions in Region Growing Process The watershed segmentation method holds the merits of edge-based and region-based methods together, but still shows some problems such as over segmentation and merging fault. We propose an algorithm which overcomes the problems of the watershed method and shows efficient performance for .general images, not for specific ones. The algorithm segments or merges regions by thresholding the depths of the catchment basins, the similarities and the sizes of the regions. The experimental results shows the reduction of the number of the segmented regions that are suitable to human visual system and consciousness.

  • PDF

The Image Segmentation Method using Adaptive Watershed Algorithm for Region Boundary Preservation

  • Kwon, Dong-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권1호
    • /
    • pp.39-46
    • /
    • 2019
  • This paper proposes an adaptive threshold watershed algorithm, which is the method used for image segmentation and boundary detection, which extends the region on the basis of regional minimum point. First, apply adaptive thresholds to determine regional minimum points. Second, it extends the region by applying adaptive thresholds based on determined regional minimum points. Traditional watershed algorithms create over-segmentation, resulting in the disadvantages of breaking boundaries between regions. These segmentation results mainly from the boundary of the object, creating an inaccurate region. To solve these problems, this paper applies an improved watershed algorithm applied with adaptive threshold in regional minimum point search and region expansion in order to reduce over-segmentation and breaking the boundary of region. This resulted in over-segmentation suppression and the result of having the boundary of precisely divided regions. The experimental results show that the proposed algorithm can apply adaptive thresholds to reduce the number of segmented regions and see that the segmented boundary parts are correct.

Region Growing Segmentation with Directional Features

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.731-740
    • /
    • 2010
  • A region merging technique is suggested in this paper for the segmentation of high-spatial resolution imagery. It employs a region growing scheme based on the region adjacency graph (RAG). The proposed algorithm uses directional neighbor-line average feature vectors to improve the quality of segmentation. The feature vector consists of 9 components which includes an observation and 8 directional averages. Each directional average is the average of the pixel values along the neighbor line for a given neighbor line length at each direction. The merging coefficients of the segmentation process use a part of the feature components according to a given merging coefficient order. This study performed the extensive experiments using simulation data and a real high-spatial resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for the object-based analysis of high-spatial resolution images.

AUTOMATIC IMAGE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING DATA BY COMBINING REGION AND EDGE INFORMATION

  • Byun, Young-Gi;Kim, Yong-II
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.72-75
    • /
    • 2008
  • Image segmentation techniques becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Seeded Region Growing (SRG) and Edge Information. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying SRG. Finally the region merging process, using region adjacency graph (RAG), was carried out to get the final segmentation result. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

  • PDF

Region-based Vessel Segmentation Using Level Set Framework

  • Yu Gang;Lin Pan;Li Peng;Bian Zhengzhong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.660-667
    • /
    • 2006
  • This paper presents a novel region-based snake method for vessel segmentation. According to geometric shape analysis of the vessel structure with different scale, an efficient statistical estimation of vessel branches is introduced into the energy objective function, which applies not only the vessel intensity information, but also geometric information of line-like structure in the image. The defined energy function is minimized using the gradient descent method and a new region-based speed function is obtained, which is more accurate to the vessel structure and not sensitive to the initial condition. The narrow band algorithm in the level set framework implements the proposed method, the solution of which is steady. The segmentation experiments are shown on several images. Compared with other geometric active contour models, the proposed method is more efficient and robust.

의료 영상처리에서의 물리적 이론을 활용한 객체 유효 인식 방법 (Effective Object Recognition based on Physical Theory in Medical Image Processing)

  • 은성종;황보택근
    • 한국콘텐츠학회논문지
    • /
    • 제12권12호
    • /
    • pp.63-70
    • /
    • 2012
  • 의료 영상처리 분야에서의 일반적인 객체 인식 방법은 영역 분할 알고리즘을 기반으로 처리되어진다. 컴퓨팅 분야에서의 이러한 영역 분할 알고리즘은 대부분 밝기 정보, 형태 정보, 패턴 분석 등 다양한 입력정보의 컴퓨팅 처리를 통해 처리된다. 그러나 이러한 컴퓨팅 방법으로는 앞서 언급된 입력 정보들이 의미가 없을 경우, 영역 분할에 많은 제약이 따르게 된다. 따라서 본 논문은 이러한 컴퓨팅 처리의 근본적인 제약사항을 해결하고자, MR 이론의 R2-map 정보 기반의 효과적인 영역 분할 방법은 제안하였다. 본 방법은 간 영역이 포함된 영상에서 실험하였으며, R2-map의 특징점들을 2차원 영역성장법의 씨앗점으로 설정한 후, 검출된 영역의 최종 경계선 보정작업을 통해 경계가 모호하더라도 영역 분할이 가능하게끔 하였다. 해당 영상의 실험 결과, 평균 7.5%의 평균 영역 차이로 기존의 대표 영역 분할 알고리즘에 비해 높은 정확도가 산출되었다.