• Title/Summary/Keyword: regenerated shoots

Search Result 209, Processing Time 0.02 seconds

Plant Regeneration from Cotyledon and Hypocotyl Tissues of Chinese Cabbage (배추의 자엽과 배축 절편체로부터의 식물체 재분화)

  • Kang, Byung-Kook;Lim, Chae-Wan;Chung, Kyu-Hwan;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.315-319
    • /
    • 2001
  • The study was carried out to develop a simple and efficient system to regenerate plants from cotyledon and hypocotyl tissues of Chinese cabbage (Brassica campestris L. ssp. pekinensis cv Seoul). Among the various combinations of naphthalene acetic acid (NAA) and 6-benzyladenine (BA) tested, the best shoot induction medium for cotyledon, with 2.67 shoots per explants, contained $2.0mg{\cdot}L^{-1}$ NAA, $1.0mg{\cdot}L^{-1}$ BA and $16.7mg{\cdot}L^{-1}$ $AgNO_3$. The shoot induction medium with $1.0mg{\cdot}L^{-1}$ NAA, $5.0mg{\cdot}L^{-1}$ BA and $16.7mg{\cdot}L^{-1}$ $AgNO_3$, was best for shoot induction from hypocotyl explants, with 1.87 shoots per explants. After shoot induction, regenerated shoots were excised and rooted on rooting medium. Rooted plantlets were then hardened in the high humidity growth chamber and transplanted to pots, and then grown in the greenhouse. Regenerated plants appeared phenotypically normal and there were no changes in chromosome number.

  • PDF

Factors Effecting Agrobacterium Mediated Transformation and Regeneration of Populus nigra × P. maximowiczii (Agrobacterium tumefaciens에 의한 양황철나무의 형질전환(形質轉換) 요인(要因))

  • Park, Young Goo;Shin, Dong Won;Kim, Joung Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.278-284
    • /
    • 1990
  • We have demonstrated expression of bacterial genes transferred into cells of Populus nigra ${\times}$ P. maximowiczii by A. tumefaciens strain 6044 (pGA 472). We determined the optimum concentration of kanamycin sulfate for effective selection of punctured leaf transformed using Agrobacterium binary vector pGA 472 containing a neomycine phosphotransferase gene (NPT-II) which confers kanamycin resistance. The combination of cefotaxime (200mg/l) and carbenicillin (300mg/l) showed good performance of discarding Agrobacterium from inoculated punctured leaf. A relatively low concentration (10mg/l) of kanamycin sulfate inhibited callus and shoots induction from punctured leaf. Number of shoots regenerated from co-cultured punctured leaf was 3.0 on MS basal medium supplemented with 10 mg/l kanamycin sulfate, while that of not co-cultured punctured leaf was none. The regeneration rate was 10% from the punctured leaf co-cultured on MS medium with 10 mg/l kanamycin. Regenerated shoots are developing from micropropagation for Southern blot analysis and inheritance of the kanamycin resistance trait (NPT-II).

  • PDF

Micropropagation by Apical Meristem Culture of Wasabia japonica Matsum (고추냉이의 頂端分裂組織培養에 의한 微細增殖)

  • 은종선;고정애;김영선;김명준
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.43-48
    • /
    • 1997
  • Apical meristems of Wasabia japonica were cultured on Murashige and Skoog's medium supplemented with cytokinins alone or together with 1.0 mg/L IAA. Shoot initials could be induced from leaf primordia on apical meristems. Calli and roots were formed on the medium containing cytokinins and 1.0 mg/L IAA in combination after 30 days of culture, but there were no callus proliferation. Shoot organogenesis began after 60 days of culture and these small shoots elongated when transferred to a medium containing 1.0 mg/L BA or kinetin. Shoots were formed directly without callus induction from apical meristems all the explants on the medium containing cytokinins variously, and most of the shoots proliferated multiple shoots which could be divided to obtain plantlets. Shoot multiplication rate in response to cytokinins was best on the medium containing 1.0 mg/L BA or 2.0 mg/L zeatin. Divided plantlets rooted well on MS medium containing 0.01 mg/L IBA after 15~30 days of subculture and the rooted plantlets developed into whole plants with multiple shoots. After rooting, the regenerated plants were washed and transferred to the pots containing sterilized soil.

  • PDF

Adventitious Shoot Formation and Plant Regeneration from Explants of Solanum nigrum L. (까마중(Solanum nigrum L.)의 유식물 절편체에서 부정아 형성 및 식물체 재분화)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Korean Journal of Plant Resources
    • /
    • v.25 no.2
    • /
    • pp.277-284
    • /
    • 2012
  • In the present study, the effects of plant growth regulators on adventitious shoot and root formation of various explants of $in$ $vitro$ seedlings of $Solanum$ $nigrum$ L. were investigated to determine the optimum conditions for the high-efficiency plant regeneration of this species. The formation of adventitious shoots was higher in leaf explants than in cotyledon, hypocotyl, or epicotyl explants at low concentrations (0.5~2.0 mg $L^{-1}$ ) of 6-benzylaminopurine (BAP). The number of adventitious shoots and the shoot length were also higher in both leaf and cotyledon explants. In particular, 2.0 mg $L^{-1}$ BAP was most effective for stimulating the induction and multiplication of adventitious shoots. In terms of root formation and root development from shoots that were separated from multiple shoots, indole butyric acid (IBA) and indole acetic acid (IAA) were more effective than ${\alpha}$-naphthalene acetic acid (NAA). The percentage of rooting as well as the number of roots per shoot (4.0), root length (7.82 cm), and shoot length (8.76 cm) was highest on MS media supplemented with 0.05 mg $L^{-1}$ IAA. Furthermore, 100% of the regenerated plantlets survived when transplanted to compost soil. These results suggest that leaf explants are the best source for the high-efficiency regeneration of $S.$ $nigrum$ L., and that 2.0 mg $L^{-1}$ BAP and 0.05 mg $L^{-1}$ IAA are the best conditions for shoot and root induction, respectively.

Acquirement of transgenic rose plants from embryogenic calluses via Agrobacterium tumefaciens (배발생 캘러스를 이용한 아그로박테리움 매개형질전환 장미 식물체 획득)

  • Lee, Su-Young;Lee, Jung-Lim;Kim, Won-Hee;Kim, Seung-Tae;Lee, Eun-Kyung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.511-516
    • /
    • 2010
  • The process to acquire intron-GUS gene-expressed transformants from somatic embryos (including embryogenic calli) of Rosa hybrida cv. 'Sweet Yellow' using Agrobacterium-meditated transformation method was reported in this study. Somatic embryos including embryogenic calluses were infected with Agrobacterium tumefaciens AGL1 strain (O.D = 0.7~1.6) including intron-GUS gene for 30 min, and were co-cultured for 3 days. After co-cultivation, they were cultured on embryo germination medium (EGM) supplemented with $250\;mg{\cdot}L^{-1}$ cefotaxim at $4^{\circ}C$ for 7 days. Then, transient GUS gene expression was observed. Shoots were regenerated from the shoot primodia induced from the intron-GUS gene-transferred either somatic embryos or embryogenic calli cultured on EGM supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$. Before induction of rooting from shoots cultured on shoot growing medium supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$, the shoots were cultured on multi-shoot induction medium supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$ to induce multi-shoots. When expression of the gene from a part of the multi-shoots was identified by GUS transient assay, the putative transgenic multishoots were transferred to rooting medium supplemented with cefotaxim $250\;mg{\cdot}L^{-1}$. After the formation of healthy roots, transgenic plantlets were transferred to the greenhouse after acclimatization. The expression rate of the intron-GUS gene in the multi-shoots was 100%.

Development of a Reliable Technique to Eliminate Sweet potato leaf curl virus through Meristem Tip Culture Combined with Therapy of Infected Ipomoea Species

  • Cheong, Eun-Ju;Hurtt, Suzanne;Salih, Sarbagh;Li, Ruhui
    • Korean Journal of Plant Resources
    • /
    • v.23 no.3
    • /
    • pp.233-241
    • /
    • 2010
  • In vitro elimination of Sweet potato leaf curl virus (SPLCV) from infected sweet potato is difficult due to low number of virus-free plants obtained from meristem tip culture and long growth period required for the virus detection. In this study, efficient production of the SPLCV-free sweet potato by in vitro therapy coupled with a PCR assay for virus detection was investigated. Infected shoots cultured on Murashige and Skoog medium were treated at three different temperatures for 7 weeks followed by meristem tip culture on the medium with or without ribavirin at 50 mg/L. The regenerated plantlets were tested for virus infection by a PCR assay. The results showed that the both heat- and cold-treatments, and addition of the ribavirin did not have significant effect on efficiency of the virus elimination. The meristem size, however, greatly affected the survival rate. Meristems sized over 0.4 mm survived better than smaller ones (0.2-0.3 mm). The PCR assay was approved to be a rapid, sensitive and reliable for the SPLCV detection in regenerated plantlets. Therefore, combination of cultivating meristem tips sized 0.4-0.5 mm on the medium at $22^{\circ}C$ without ribavirin and detection of SPLCV in the regenerated plantlets by the PCR assay was an efficient system for the SPLCV elimination from infected sweet potato.

Plant Regeneration Through Organogenesis and Somatic Embryogenesis of Cucumber (Cucumis sativus L.) (오이(Cucumis sativus L.) 기관분화 및 체세포배 발생을 통한 식물체 재분화)

  • 김재훈;오승용;이행순;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.2
    • /
    • pp.125-129
    • /
    • 1998
  • Cucumber (Cucumis sativus L.) plants were regenerated through organogenesis and somatic embryogenesis in cotyledon and hypocotyl cultures. The shoots were efficiently formed on the basal region of cotyledons cultured on MS medium containing 1.0㎎/L zeatin and 0.1㎎/L IAA in all cultivars used. Embryogenic calli were formed on hypocotyl segments cultured on MS medium containing 1.0㎎/L 2,4-D in cv. group 'Nakhab' and maintained by consecutive subculture on the same medium every 2-3 weeks without loss of embryogenic ability. Upon transfer to MS basal medium, high frequency somatic embryogenesis was achieved easily from embryogenic callus. Regenerated plantlets through organogenesis and somatic embryogenesis were transplanted to pots and gradually acclimatized to greenhouse condition where they subsequently produced fruits.

  • PDF

In vitro Mass Propagation of Ardisia pusilla DC. (산호수 (Ardisia pusilla DC.)의 기내 대량번식)

  • Kang Gwan-Ho;Oh Owel-Sun;Goo Dae-Hoe;Eun Jong-Seon;Kim Hyung-Moo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.281-285
    • /
    • 2005
  • To establish the mass proliferation system of Ardisia pusilla DC, the shoot tips of Ardisia pusilla DC were cultured on the MS and half-strength MS medium supplemented with $0{\sim}5.0$ mg/L BA or $0{\sim}0.5$ mg/L thidiazuron(TDZ), respectively. A few multiple shoot formation observed when the shoots were cultured on MS medium containing TDZ. However, the frequency of multiple shoot formation was reached up to 82.4%, when the shoots were cultured on half-strength MS medium supplemented with 0.5 mg/L BA. Also the number of shoot per explant was 7.1. To promote rooting from multiple shoot, newly formed shoots were transferred to half-strength MS medium containing 0.5 mg/L IBA or 0.5 mg/L NAA, respectively. Regenerated plantlets were grown to normal mature plants in soil.

Effect of Growth Regulators of Plant Regeneration from Rhodiola sachalinesis leaf segments (홍경천 (Rhodiola sachalinesis)의 엽육 절편으로부터 식물체 분화에 미치는 생장조절제의 영향)

  • Bae Ki-Hwa;Yoo Ji-Ae;Yoon Eui-Soo
    • Korean Journal of Plant Resources
    • /
    • v.18 no.3
    • /
    • pp.410-416
    • /
    • 2005
  • Rhodiola sachalinensis has been used as a traditional medicine in Asia. We were germination in vitro seedling of grow naturally in Chang bai Moutain. And callus induction from leaf segments, treatmented plant regeneration in plant growth regulators (Auxins and cytokinins). We investigated optimal conditions for efficient plant regeneration through callus induction and shoots formation on medium with various kinds of growth regulators. Callus induction and adventitious shoots formation was achieved when cytokinin and auxin combinated to this experiment. Especially, there was the highest callus induction rates when we were used to 1 mg/L kinetin and 2 mg/L NAA $(98\%)$, Adventitious shoots formation wear obtained difference rate when cytokinin alone 1 mg/L BA $(96.6\%)$. And regenerated plantlet was acclimatized and transplanted to the soil, showed $100\%$ survival.

Callus induction and plant regeneration of Iris dichotoma Pall. in endangered species

  • Bae, Kee-Hwa;Yoo, Kyoung-Hwa;Lee, Hak-Bong;Yoon, Eui-Soo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.182-188
    • /
    • 2012
  • Iris dichotoma Pall. is an important endangered plant belonging to the family Iridaceae. A method was developed for the rapid micropropagation of I. dichotoma through plant regeneration from leaf, rhizome, and root explant-derived calli. Leaf, rhizome, and root segments were cultured on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxy acetic acid (2,4-D; $0-3.0mg{\cdot}L^{-1}$) for callus induction. Callus production was highest at $1.0mg{\cdot}L^{-1}$ 2,4-D, where 73.8% and 45.5% of cultured rhizome and root cuttings, respectively, produced calli. The viable calli were maintained at an induced concentration of 2,4-D ($3.0mg{\cdot}L^{-1}$). They were then transferred to MS medium supplemented with various concentrations of 2,4-D ($0-3.0mg{\cdot}L^{-1}$) in combination with 6-benzyladenine (BA: 0, 1.0 and $3.0mg{\cdot}L^{-1}$) for adventitious shoot regeneration. The addition of a low concentration of 2,4-D into BA-containing medium significantly increased the frequency of shoot regeneration in leaf, rhizome, and root-derived calli. The highest number of adventitious shoots (26.4 per callus) formed at $0.5mg{\cdot}L^{-1}$ 2,4-D and 1.0 mg/l BA. For rooting of the shoots, half- strength MS medium supplemented with different concentrations of indole 3-butyric acid (IBA) $0-3.0mg{\cdot}L^{-1}$ was tested. The optimal results were observed using half-strength MS medium supplemented with $1.0mg{\cdot}L^{-1}$ IBA, on which 98% of the regenerated shoots developed roots with an average of 3.5 roots per shoot within 45 days. The plantlets raised in vitro were acclimatized and transferred to soil with 95% success. This in vitro propagation protocol will be useful for conservation and mass propagation of this endangered plant.