• Title/Summary/Keyword: refractive index sensors

Search Result 53, Processing Time 0.028 seconds

Highly Sensitive Integrated Photonic Temperature Sensor Exploiting a Polymeric Microring Resonator (폴리머 마이크로링 공진기를 이용한 고감도 집적광학형 온도센서)

  • Lee, Hak-Soon;Kim, Gun-Duk;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.224-228
    • /
    • 2008
  • A highly sensitive integrated photonic temperature sensor was proposed and developed incorporating a polymeric microring resonator. The change in the ambient temperature was estimated by observing the shift in the resonant wavelength of the resonator induced via the thermooptic effect. For the purpose of enhancing its sensitivity, the sensor was built by implementing a polymeric resonator exhibiting a high thermooptic coefficient on a silicon substrate with a small coefficient of thermal expansion. For the range of from $20^{\circ}C$ to $30^{\circ}C$ near the room temperature, the fabricated sensor yielded a sensitivity of as high as 165 ${\pm}/^{\circ}C$ and a resolution of better than $0.1^{\circ}C$. And its performance was found to be hardly affected by the variation in the refractive index of the target analyte, which was applied to the surface of the sensor. It is hence expected that the sensor could be integrated with other refractormetric optical sensors, thereby compensating for the fatal error caused by the change in the ambient temperature.

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation (화산재입자의 고유 광학특성이 원격탐사 복사량에 미치는 민감도 분석)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.

Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film

  • Bogdanowicz, Robert;Sobaszek, Michał;Ficek, Mateusz;Gnyba, Marcin;Ryl, Jacek;Siuzdak, Katarzyna;Bock, Wojtek J.;Smietana, Mateusz
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.705-710
    • /
    • 2015
  • The fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ℃. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD films and mean grain size in the range of 100-250 nm. The films deposited on the glass reference samples exhibit high refractive index (n=2.05 at λ=550 nm) and low extinction coefficient. Furthermore, cyclic voltammograms (CV) were recorded to determine the electrochemical window and reaction reversibility at the B-NCD fiber-based electrode. CV measurements in aqueous media consisting of 5 mM K3[Fe(CN)6] in 0.5 M Na2SO4 demonstrated a width of the electrochemical window up to 1.03 V and relatively fast kinetics expressed by a redox peak splitting below 500 mV. Moreover, thanks to high-n B-NCD overlay, the coated fibers can be also used for enhancing the sensitivity of long-period gratings (LPGs) induced in the fiber. The LPG is capable of measuring variations in refractive index of the surrounding liquid by tracing the shift in resonance appearing in the transmitted spectrum. Possible combined CV and LPG-based measurements are discussed in this work.

Efficient Humidity Color Sensor Based on a Photonic Crystal with a Metal-Organic Framework (금속-유기 구조체를 이용한 포토닉 크리스탈 기반의 효율적인 습도 컬러 센서)

  • Kim, Jun Yong;Lee, Sung Hak;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.268-274
    • /
    • 2018
  • In this study we suggest a humidity-sensitive color sensor using a one-dimensional photonic crystal and Hong Kong University of Science and Technology-1 (HKUST-1), which is a metal-organic framework (MOF) substance. One-dimensional photonic crystals have a photonic band gap, due to a periodic refractive-index change, and block and reflect light components in a specific wavelength band. The refractive index of HKUST-1 differs in dry and humid environments. Herein we designed a sensor using the presence of the photonic band gap, with FDTD simulation. As a result of optical analysis, the color conversion of the reflected light was superior to the color conversion of the transmitted light. When the center wavelength of the photonic band gap was 550 nm, the maximum peak value of the wet environment increased by a factor of about 9.5 compared to the dry environment, and the color conversion from achromatic to green was excellent as a sensor. The results of this study suggest the application of MOF materials to moisture sensors, and the nanostructure design of MOF materials will expand the applications to industrial devices.

A Study on Alkali ion-Sensitivity of $Si_{x}O_{y}N_{z}$ Fabricated by Low Pressure Chemical Vapor Deposition (저압화학기상 성장법으로 제작된 $Si_{x}O_{y}N_{z}$의 알칼리이온 감지성에 관한 연구)

  • Shin, P.K.;Lee, D.C.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.200-206
    • /
    • 1997
  • Using $SiCl_{2}H_{2}$, $NH_{3}$ and $N_{2}O$, we have fabricated silicon oxynitride ($Si_{x}O_{y}N_{z}$) layers on thermally oxidized silicon wafer by low pressure chemical vapor deposition. Three different compositions were achieved by controlling gas flow ratios($NH_{3}/N_{2}O$)) to 0.2, 0.5 and 2 with fixed gas flow of $SiCl_{2}H_{2}$. Ellipsometry and high frequency capacitance-voltage(HFCV) measurements were adapted to investigate the difference of the refractive index, dielectric constant, and composition, respectively. Regardless of nitride content, silicon oxynitrides had similar stability to silicon nitrides. The relative standing of alkali ion sensitivity in silicon oxynitride layers was influenced by nitride content. The better alkali ion-sensitivity was achieved by increasing oxide content in bulk of silicon oxynitrides.

  • PDF

Side Polished Fiber Optic UV Sensor Using Evanescent Coupling of Photo-Functional Polymer (광기능성 폴리머의 소산장 결합을 이용한 측면연마 광섬유형 자외선 센서)

  • Kim, Sang-Woo;Seo, Gyoo-Won;Yoon, Jong-Kuk;Jang, Su-Won;Yu, Yun-Sik;Lee, Seung-Ha;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.335-341
    • /
    • 2002
  • In this paper, we investigated a novel UV sensor using evanescent field coupling between the side polished fiber and photo-functional polymer waveguide. It was found that resonant wavelength shifts occur due to variation in the refractive index of polymer planar waveguide for its photo-functional properties on exposed UV. Spiroxazine (photochromic dye) was used as the planar waveguide. The resonant wavelength responses were exhibited at 1.44 nm/mW, 1.64 nm/mW, and 1.78 nm/mW when UV irradiations were exposed for 20 seconds, 30 seconds, and 40 seconds, respectively. The recovery time of sensor was independent of UV exposure power and 90% recovery time was 100 seconds.

Pressure sensor using the side polished single mode fiber and polymer planar waveguide coupler (측면연마된 단일모드 광섬유와 폴리머 평면도파로 결합기를 이용한 압력 센서)

  • Yoon, Jong-Kuk;Jung, Woong-Gyu;Kim, Sang-Woo;Kim, Eung-Soo;Lee, Seung-Ha;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.156-162
    • /
    • 2001
  • Novel pressure sensor using the resonance wavelength shift of single mode fiber-to-planar waveguide coupler, was demonstrated. It is found that the resonance wavelength shift due to refractive index variation of polymers by pressure occurs and its sensitivity depends on materials. We adopted symmetric structure of planar waveguide and remove the polarization dependence which is inevitable with side-polished fiber. AZ4562, AZl512 and THB-30 are used as planar waveguide materials and the resonance wavelength shifting by pressure was shown -0.008um/bar, 0.033nm/bar and 0.16nm/bar, respectively.

  • PDF

Study on the temperature and optical wavelength sensing composites as smart materials (온도 및 광파장을 감지하는 스마트 복합재료에 관한 연구)

  • ;Delbert E. Day;James O. Stoffer
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.439-448
    • /
    • 1996
  • The possibility of application or the transparent BK10 glass fiber/PMMA composites as a temperature-or wavelength-sensors was studied. Measurement of diameter and refractive index for glass fibers to be reinforced to PMMA as a function of drawing speed and temperature was done and the appropriate coating methods and solvent for coupling agent was researched. $T_{max%}$ value at which the maximum transmission for the composites occurs could be controlled to be in $31~50^{\circ}C$ by the processing factors such as fiber diameter, fiber vol%, molecular wt. of PMMA. Furthermore, with different wavelength other than 589.3 nm, the $T_{max%}$ value could be controlled to be in $35~55^{\circ}C$. For the sensibility of wavelength for the composites, there was not a wavelength ($\lamda_{max%}$) showing maximum transmission.

  • PDF

Fiber optic temperature sensor using evanescent field coupling of the thermo-optic polymer planar waveguide (열광학 폴리머 평면도파로의 소산장결합을 이용한 광섬유형 온도센서)

  • Kim, Si-Hong;Jung, Woong-Gyu;Kim, Kwang-Tack;Song, Jae-Won;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • Optical fiber temperature sensor, using resonance wavelength shifting of single mode fiber-to-planar waveguide coupler by heat, was fabricated. Thermo-optic polymers, have large change of refractive index due to heat, were used for planar waveguide. The device fabrication procedure including fiber polishing steps was illustrated and the device structure with independent polarization was demonstrated experimentally. The resonance wavelength difference of fabricated device was less than 2nm. The resonance wavelength shifting owing to temperature variation, from room temperature($24^{\circ}C$) to $90^{\circ}C$, was showed $-0.54nm/^{\circ}C$, $-3nm/^{\circ}C$.

  • PDF

Pattern recognition and characteristics of basic taste substances using the evanescent wave in multichannel optical fiber sensor (소산파를 이용한 다채널 광섬유형 미각센서의 제작 및 기본 맛에 대한 패턴분석)

  • Lee, Su-Mi;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • In this study, a multichannel taste sensor using the evanescent field absorption in fiber optic was developed, and evaluated its characteristics for several basic taste substances. This sensor is based on the change of evanescent field absorption at the surface of optical fiber core layer. The sensor device was made of a plastic-clad-silica fiber (3M Co., FP-400-UHT, core diameter $400\;{\mu}m$) and a middle portion of cladding layer was removed and the surface of stripped fiber core was dip-coated with a sensing membrane. And then, it was determined the difference of evanescent field absorption into the sensing membrane, according to various taste substances and its concentrations variance. The sensing membranes were prepared with six kinds of dyes, were known as potential sensitive dye together with silicone polymer the same refractive index of cladding. Each output patterns were obtained from the sensor devices could be distinguished not only five kinds of basic taste substances such as sweetness, saltiness, sourness, bitterness and umami, but also various mixed taste substances.

  • PDF