• Title/Summary/Keyword: refractive index of air

Search Result 86, Processing Time 0.032 seconds

Correlations between Refractive Index and Retroreflectance of Glass Beads for Use in Road-marking Applications under Wet Conditions

  • Shin, Sang Yeol;Lee, Ji In;Chung, Woon Jin;Choi, Yong Gyu
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.423-428
    • /
    • 2019
  • Visibility of road-surface markings is one of the critical issues that should be secured for self-driving cars as well as human drivers. Glass beads are taking on the role of retroreflectors, and therefore are considered a necessity in modern pavements. In this context, retroreflectance is sensitively dependent not only on the refractive index of glass beads but also on that of the surrounding medium. This implies that the optimum refractive index of glass beads immersed in water, i.e. under wet conditions, is different from that of glass beads surrounded by air, i.e. under dry conditions. A refractive index of approximately 1.9, which is known to maximize retroreflectance under dry conditions, actually exhibits much poorer retroreflectance under wet conditions. This suggests that glass beads with optimal refractive index for wet conditions need to be installed together with those for dry conditions. We propose a facile but practical model capable of calculating retroreflectance of glass beads surrounded by an arbitrary medium, here water in particular, and experimentally verify its capability of assessing the refractive index of commercial glass beads. Changes in retroreflectance according to the mixing ratio of glass beads with different refractive indices are also discussed, in an effort to propose the proper use of glass beads produced for dry and wet conditions.

Measurement of Refractive Index of Solid Medium by Critical Angle Method When Air Gap is Present

  • Lim, Hwan-Hong;Kwon, Moon-Soo;Choi, Hee-Joo;Kim, Byoung-Joo;Cha, Myoung-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.210-214
    • /
    • 2008
  • A critical angle method was used to measure the index of refraction of a solid medium when an air gap between the prism and the medium is present. The gap effect was analyzed both numerically and experimentally. Since the total internal reflection is severely disturbed by the large gap, determination of the critical angle and the resulting refractive index becomes ambiguous and inaccurate. By using an index matching fluid, we could determine the index of refraction with an uncertainty of ${\pm}2{\times}1^{-3}$ even when the gap is as large as 1 ${\mu}m$.

A Real Time Measurement of Ice Concentration of Ice Slurry in Pipe (배관내 흐르는 아이스슬러리의 실시간 얼음분율 측정)

  • Jung, Hae-Won;Peck, Jong-Hyeon;Kim, Yong-Chan;Kang, Chae-Dong;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.599-606
    • /
    • 2007
  • An experimental study was performed to measure a ice concentration of ice slurry flowing in a pipe in a real time. In the present paper, we suggested a measuring method by a refractive index and compared it to other methods by a freezing point and a density. To measure the refractive index of the solution, ice particles in the ice slurry should be completely removed and a hydro-cyclone was introduced instead of a mesh. The measuring method through the refractive index coincided with the density method using the real-time solution density within ${\pm}5%$ error range, having the error range less than the other two methods. In the other hand, the measuring method through the density has a good resolution, but the result using the initial density of the solution was different more than 10% error from that using the real-time density. And it has an error range 1.5 times greater than the method through the refractive index.

Change of Refractive Index of Air in X-band due to Atmospheric Humidity, Temperature and Pressure measured by GB-SAR Interferometry (GB-SAR 간섭기법으로 측정된 X-밴드 대기 굴절률의 상대습도, 기온 및 기압에 따른 변화)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hoon;Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • In this paper, we analyzed the phase change of 5-triangular trihedral comer reflectors by using X-band Ground-Based Synthetic Aperture Radar (GB-SAR) system. Each reflector was set as a stationary target at a different distance from the system. We obtained total 123 full-polarization images during 40 hours continuously at 20 minute interval. Results of SAR interferometric analysis showed phase changes of maximum 2 radians and followed similar pattern with atmospheric data. Through a GB-SAR phase formula that includes refractive index in the air, we performed regression analysis for refractive index as a function of atmospheric humidity, temperature and pressure. As a result, refractive index of air in X-band showed relatively high coefficient of determination with humidity and temperature (0.72 and 0.76 on average, respectively) but not so with pressure (0.34). The refractive index of air in X -band changed by 3.14\;{\times}\;10^{-5}$ during the measuring time with a humidity range of 50% ~ 90% and a temperature range of $-1^{\circ}C$ ~ $9^{\circ}C$. We expect that a total expression of refractive index of air including humidity, temperature and pressure can be calculated when more extensive data would be collected at various atmospheric conditions.

Improving the Light Extraction Efficiency of GRIN Coatings Pillar Light Emitting Diodes

  • Moe, War War;Aye, Mg;Hla, Tin Tin
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.293-300
    • /
    • 2022
  • This study investigated a graded-refractive-index (GRIN) coating pattern capable of improving the light extraction efficiency of GaN light-emitting diodes (LEDs). The planar LEDs had total internal reflection thanks to the large difference in refractive index between the LED semiconductor and the surrounding medium (air). The main goal of this paper was to reduce the trapped light inside the LED by controlling the refractive index using various compositions of (TiO2)x(SiO2)1-x in GRIN LEDs consisting of five dielectric layers. Several types of multilayer LEDs were simulated and it was determined the transmittance value of the LEDs with many layers was greater than the LEDs with less layers. Then, the specific ranges of incident angles of the individual layers which depend on the refractive index were evaluated. According to theoretical calculations, the light extraction efficiency (LEE) of the five-layer GRIN is 25.29 %, 28.54 % and 30.22 %, respectively. Consequently, the five-layer GRIN LEDs patterned enhancement outcome LEE over the reference planar LEDs. The results suggest the increased light extraction efficiency is related to the loss of Fresnel transmission and the release of the light mode trapped inside the LED chip by the graded-refractive-index.

Ion assisted deposition of $TiO_2$, $ZrO_2$ and $SiO_xN_y$ optical thin films

  • Cho, H.J.;Hwangbo, C.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.75-79
    • /
    • 1997
  • Optical and mechanical characteristics of $TiO-2, ZrO_2 \;and\; SiO_xN_y$ thin films prepared by ion assisted deposition (IAD) were investigated. IAD films were bombarded by Ar or nitrogen ion beam from a Kaufman ion source while they were grown in as e-beam evaporator. The result shows that the Ae IAD increases the refractive index and packing density of $TiO_2 films close to those of the bulk. For $ZrO_2$ films the Ar IAD increases the average refractive index decreases the negative inhomogeneity of refractive index and reverses to the positive inhomogeneity. The optical properties result from improved packing density and denser outer layer next to air The Ar-ion bombardment also induces the changes in microstructure of $ZrO_2$ films such as the preferred (111) orientation of cubic phase increase in compressive stress and reduction of surface roughness. Inhomogeneous refractive index SiOxNy films were also prepared by nitrogen IAD and variable refractive index of $SiO_xN_y$ film was applied to fabricate a rugate filter.

  • PDF

The reflection characteristic of one-dimensional photonic crystal using by chalcogenide thin films (칼코게나이드 박막을 이용한 일차원 photonic crystal의 반사 특성)

  • Lee, Jung-Tae;Shin, Kyung;Yeo, Cheol-Ho;Ku, Dae-Sung;Kim, Jong-Bin;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.120-123
    • /
    • 2002
  • In this study it had an excellent optical characteristic, it followed in the creation rate and the refractive index regulation to the ease. Chalcogenide produced the $As_{45}Se_{45}Te_{10}$ thin film and the $MgF_{2}$ thin film. It measured thin film plan simulation, and the thin film has a 1 -dimensional photonic band gap. The chalcogenide $As_{45}Se_{45}Te_{10}$ thin film was measured with the fact that it has a high refractive index (2.6~2.9). The $As_{45}Se_{45}Te_{10}$ and $MgF_{2}$ thin film, have a high refractive index and a low refractive index, it used a simulation and planed period 5-pairs structure, the result was from 500nm to 800nm. It will be able to confirm the characteristic which most of the incidence light reflects, the He-Ne (632.8nm) laser was irradiated in the thin film which stabilized the thin film. $As_{45}Se_{45}Te_{10}$ (high refractive index layer: H) and $MgF_{2}$ (low refractive index layer: L) results which plans the thin film with glass/LHLHLLHLHL/air structure, 632.8nm against transmitance, increased a lot. An application possibility with the filter against a specific wave length was confirmed.

  • PDF

Atmospheric Correction of Arc-Rail Type GB-SAR Using Refractive Index of Air (대기 굴절률을 이용한 원형레일 기반 지상 SAR 자료의 대기보정)

  • Lee, Jae-Hee;Kim, Kwang-Eun;Cho, Seong-Jun;Sung, Nak-Hoon;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.237-243
    • /
    • 2012
  • In this paper, an atmospheric effect of repetitive measurements of X-band (9.65 GHz) arc-rail type GB-SAR (ArcSAR) system was quantitatively analyzed. Four artificial triangular trihedral corner reflectors as stationary targets for getting stable back scattered signal during 43 hours continually. The results of the analysis showed that the phase of those stationary targets had changed maximum of 5 radian (12.4 mm) and total RMS error had was 1.62 radian (4 mm) during 65 repeated measuring time. The refractive index of air which was calculated using the temperature;humidity and pressure of atmosphere showed very close relationship with the phase difference. We could check the atmospheric correction was fulfilled by the correction of an atmospheric effect using refractive index during the selected 16 hours period showed that RMS error was dropped from 1.74 radian (4.3 mm) to 0.10 radian (0.24 mm).

Measurement of the Thickness and Refractive Index of a Thin Film Using a Double-slit Experiment (이중 슬릿 회절 실험을 이용한 박막의 두께와 굴절률 측정)

  • Kim, Hee Sung;Prak, Soobong;Kim, Deok Woo;Kim, Byoung Joo;Cha, Myoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.159-166
    • /
    • 2022
  • We measured the thickness and refractive index of a thin film using a double-slit diffraction experiment. The amount of phase step in the transmitted light generated by the thin film on the transparent substrate was measured by analyzing the diffraction pattern from the double slits. Experiments were conducted not only in air but also in distilled water, to determine thickness and refractive index simultaneously. To verify the validity of this method, we compared our values for thickness and refractive index to those measured using the well-established waveguide-coupling method. The suggested method is expected to be applied as a new method to simultaneously measure the thickness and refractive index of thin films, along with existing methods.

Refractive index-based soil moisture sensor (굴절률 기반 토양 수분 센서)

  • Sim, Eun-Seon;Hwa, Su-Bin;Jang, Ik-Hoon;Na, Jun-Hee;Kim, Min-Hoi
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.415-419
    • /
    • 2021
  • We developed a highly accurate, yet inexpensive, refractive index (RI)-based soil moisture sensor. To detect the RI, a light guide was set with a light-emitting diode and photodiode. When the air fills the space between the soil particles, most of the incident light is reflected at the interface between the waveguide and the air because of the large RI difference. As the moisture of the soil increases, the macroscopic soil RI increases. This allows incident light to pass through the interface. The intensity of the light reaching the photodiode was simulated according to the change in the soil RI. Using the simulation results, we designed and manufactured a curved glass waveguide. We evaluated the performance of the RI-based soil sensor by comparing it with a commercially available, high-cost and high-performance time-domain reflectometer (TDR). Our sensor was 96% accurate, surpassing the costly TDR sensor.