References
- L. A. Ivanov, D. V. Kiesewetter, N. N. Kiselev, V. I. Malyugin, and V. A. Slugin, "Measurement of retroreflection by glass beads for road marking," Proc. SPIE 6251, 62510U (2006).
- T. Grosges, "Retroreflection of glass beads for traffic road stripe paints," Opt. Mater. 30, 1549-1554 (2008). https://doi.org/10.1016/j.optmat.2007.09.010
- J. T. Lee, T. L. Maleck, and W. C. Taylor, "Pavement marking material evaluation study in Michigan," ITE J. Inst. Transp. Eng. 69, 44-51 (1999).
- T. Schnell, F. Aktan, and Y. C. Lee, "Nighttime visibility and retroreflectance of pavement markings in dry, wet, and rainy conditions," Transp. Res. Rec. 1824, 144-155 (2003). https://doi.org/10.3141/1824-16
- D. M. Burns, T. P. Hedblom, and T. W. Miller, "Modern pavement marking systems: Relationship between optics and nighttime visibility," Transp. Res. Rec. 2056, 43-51 (2008). https://doi.org/10.3141/2056-06
- Glass beads for traffic paint, KS L 2521, Korean Standard Association, Seoul (2017).
- H. Fuquan, L. Shangying, and W. Shaomin, "The refractive index measurement of high refractive index glass beads," Acta Photon. Sin. 30, 753-756 (2001).
- F. Sarcinelli, R. Pizzoferrato, and F. Scudieri, "Study of the refractive index of microscopic glass beads by light-refraction analysis," Appl. Opt. 36, 8999-9004 (1997). https://doi.org/10.1364/AO.36.008999
- J. L. Hand and S. M. Kreidenweis, "A new method for retrieving particle refractive index and effective density from aerosol size distribution data," Aerosol. Sci. Technol. 36, 1012-1026 (2002). https://doi.org/10.1080/02786820290092276
- A. Leblance-Hotte, R. St-Gelais, and Y.-A. Peter, "Optofluidic device for high resolution volume refractive index measurement of single cell," in Proc. 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Japan, Oct. 2012), pp. 1330-1332.
- T. Yamaguchi, "Refractive index measurement of high refractive index glass beads," Appl. Opt. 14, 1111-1115 (1975). https://doi.org/10.1364/AO.14.001111
- R. W. Spinrad and J. F. Brown, "Relative real refractive index of marine microorganisms: a technique for flow cytometric estimation," Appl. Opt. 25, 1930-1934 (1986). https://doi.org/10.1364/AO.25.001930
- S.-Y. Li, S. Qin, D.-H. Li, and Q.-H. Wang, "Using a laser source to measure the refractive index of glass beads and Debye theory analysis," Appl. Opt. 54, 9688-9694 (2015). https://doi.org/10.1364/AO.54.009688
- S. Y. Shin, J. I. Lee, W. J. Chung, S.-H. Cho, and Y. G. Choi, "Assessing the refractive index of glass beads for use in road-marking applications via retroreflectance measurement," Curr. Opt. Photon. 3, 415-422 (2019). https://doi.org/10.3807/copp.2019.3.5.415
- Standard test method for measurement of retroreflective signs using a portable retroreflectometer at a 0.2 degree observation angle, ASTM E1709-16e1, ASTM International, Pennsylvania (2016).
- Standard test method for measurement of retroreflective signs using a portable retroreflectometer at a 0.5 degree observation angle, ASTM E2540-16, ASTM International, Pennsylvania (2016).
- M. D. Stoudt and K. Vedam, "Retroreflection from spherical glass beads in highway pavement markings. 1: Specular reflection," Appl. Opt. 17, 1855-1858 (1978). https://doi.org/10.1364/AO.17.001855
- O. Smadi, R. R. Souleyrette, D. J. Ormand, and N. Hawkins, "Pavement marking retroreflectivity analysis of safety effectiveness," Transp. Res. Rec. 2056, 17-24 (2008). https://doi.org/10.3141/2056-03