DOI QR코드

DOI QR Code

Atmospheric Correction of Arc-Rail Type GB-SAR Using Refractive Index of Air

대기 굴절률을 이용한 원형레일 기반 지상 SAR 자료의 대기보정

  • Lee, Jae-Hee (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Kwang-Eun (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Seong-Jun (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Sung, Nak-Hoon (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hoon-Yol (Department of Geophysics, Kangwon National University)
  • 이재희 (한국지질자원연구원 광물자원연구본부) ;
  • 김광은 (한국지질자원연구원 광물자원연구본부) ;
  • 조성준 (한국지질자원연구원 광물자원연구본부) ;
  • 성낙훈 (한국지질자원연구원 광물자원연구본부) ;
  • 이훈열 (강원대학교 지구물리학과)
  • Received : 2012.04.01
  • Accepted : 2012.04.23
  • Published : 2012.04.30

Abstract

In this paper, an atmospheric effect of repetitive measurements of X-band (9.65 GHz) arc-rail type GB-SAR (ArcSAR) system was quantitatively analyzed. Four artificial triangular trihedral corner reflectors as stationary targets for getting stable back scattered signal during 43 hours continually. The results of the analysis showed that the phase of those stationary targets had changed maximum of 5 radian (12.4 mm) and total RMS error had was 1.62 radian (4 mm) during 65 repeated measuring time. The refractive index of air which was calculated using the temperature;humidity and pressure of atmosphere showed very close relationship with the phase difference. We could check the atmospheric correction was fulfilled by the correction of an atmospheric effect using refractive index during the selected 16 hours period showed that RMS error was dropped from 1.74 radian (4.3 mm) to 0.10 radian (0.24 mm).

이 논문에서는 중심주파수 9.65 GHz의 X-밴드 안테나를 이용한 원형레일 기반의 지상 SAR(Arc-SAR) 시스템의 반복 실험을 통해 대기 효과를 정량적으로 분석하였다. 안정된 신호 획득을 위해 고정된 삼각삼면반사체 4개를 사용하였는데 이에 의한 신호는 약 43시간에 걸쳐 연속적으로 획득되었다. 분석 결과 반사체는 고정된 상태였지만 약 5 radian(12.4 mm)의 최대 오차를, 총 65회의 실험에 대한 RMSE는 1.62 radian(4 mm)을 보였다. 이러한 위상변화 양상은 온도, 습도, 그리고 기압을 통해 산출되는 대기굴절률의 변화 양상과 높은 상관관계를 보였다. 대기굴절률을 이용한 보정을 선택된 16시간에 대해 적용하였고 보정 결과 RMSE는 1.74 radian(4.3 mm)에서 0.10 radian(0.24 mm)으로 감소하여 보정이 효과적으로 이루어졌음을 확인하였다.

Keywords

References

  1. 이재희, 이훈열, 조성준, 성낙훈, 김정호, 2010. GBSAR 간섭기법을 이용한 반사체의 인위적 변위 탐지 및 대기습도 보정, 대한원격탐사학회지, 26(2): 123-131. https://doi.org/10.7780/kjrs.2010.26.2.123
  2. 이재희, 김광은, 조성준, 성낙훈, 이훈열, 2012. Arc-SAR 시스템 개발 및 결과영상, 2012 대한원격탐사학회 춘계학술대회 논문집, 무주, Mar. 29-30. 79-83.
  3. 이훈열, 조성준, 성낙훈, 김정호, 2007. GB-SAR의 개발(II): 영상화 기법, 대한원격탐사학회지, 23(4): 247-256.
  4. 이훈열, 2012. personal communication.
  5. Cho, B.-L., Y.-K. Kong, H.-G. Park, and Y.-S. Kim, 2006. Automobile-based SAR/InSAR system for ground experiments. IEEE Geoscience and Remote Sensing Letters, 3(3): 401?405. https://doi.org/10.1109/LGRS.2006.873358
  6. Garmatyuk. D.S. and R.M. Narayanan, 2002. Ultrawideband continuous-wave random noise Arc-SAR. IEEE Transactions on Geoscience and Remote Sensing, 40(12): 2543?2552. https://doi.org/10.1109/TGRS.2002.807009
  7. Lee, H., S.-J. Cho, and K.-E. Kim, 2010. A groundbased arc-scanning synthetic aperture radar(ArcSAR) system and focusing algorithms, Proc. of 2010 International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, July. 25-30, 3490-3493.
  8. Leva, D., G. Nico, D. Tarchi, J.F. Guasch, and A.J. Sieber, 2003. Temporal analysis of a landslide by means of a Ground-Based SAR interferometer, IEEE Transactions on Geoscience and Remote Sensing, 41(4): 745-752. https://doi.org/10.1109/TGRS.2003.808902
  9. Luzi, G., M. Pieraccini, D. Mecatti, L. Noferini, G. Macaluso, A. Tamburini, and C. Atzeni 2007. Monitoring of an Alpine glacier by means of Ground-Based SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 4(3): 495-499. https://doi.org/10.1109/LGRS.2007.898282
  10. Noferini, L., M. Pieraccini, D. Mecatti, G. Luzi, C. Atzeni, A. Tamburini, and M. Broccolato, 2005. Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 43(7): 1459-1471. https://doi.org/10.1109/TGRS.2005.848707
  11. Pieraccini, M., D. Mecatti, L. Noferini, G. Luzi, G. Franchioni, and C. Atzeni, 2002. SAR interferometry for detecting the effects of earthquakes on buildings, NDT&E International, 35(2002): 615-625. https://doi.org/10.1016/S0963-8695(02)00047-6
  12. Pipia. L., X. Fabregas, A. Aguasca, and C. Lopez- Martinez, 2008. Atmospheric artifact compensation in ground-based DInSAR applications, IEEE Geoscience and Remote Sensing Letters, 5(1): 88-92. https://doi.org/10.1109/LGRS.2007.908364
  13. Tarchi, D., N. Casagli, R. Fanti, D.D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano, 2003. Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy, Engineering Geology, 68: 15-30. https://doi.org/10.1016/S0013-7952(02)00196-5
  14. Zebker, H.A., P.A. Rosen, and S. Hensley, 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, Journal of Geophysics Research, 102(B4): 7547-7563. https://doi.org/10.1029/96JB03804