• Title/Summary/Keyword: reference parameter

Search Result 845, Processing Time 0.044 seconds

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

Reference Model Updating of Considering Disturbance Characteristics for Fault Diagnosis of Large-scale DC Bus Capacitors (대용량 직류버스 커패시터의 고장진단을 위한 외란특성 반영의 레퍼런스 모델 개선)

  • Lee, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.213-218
    • /
    • 2017
  • The DC electrolytic capacitor for DC-link of power converter is widely used in various power electronic circuits and system application. Its functions include, DC Bus voltage stabilization, conduction of ripple current due to switching events, voltage smoothing, etc. Unfortunately, DC electrolytic capacitors are some of the weakest components in power electronics converters. Many papers have proposed different algorithms or diagnosis method to determinate the ESR and tan ${\delta}$ capacitance C for fault alarm system of the electrolytic capacitor. However, both ESR vary with frequency and temperature. Accurate knowledge of both parameters at the capacitors operating conditions is essential to achieve the best reference data of fault alarm. According to parameter analysis, the capacitance increases with temperature and the initial ESR decreases. Higher frequencies make the reference ESR with the initial ESRo value to decrease. Analysis results show that the proposed DC Bus electrolytic capacitor reference ESR model setting technique can be applied to advanced reference signal of capacitor diagnosis systems successfully.

The Vibration Suppression Control of a Two-Mass System using a Reference Model (2관성계의 규범모델에 의한 진동억제제어)

  • Kim, Jin-Soo;Kang, Seog-Jin;Kim, Hyun-Jung;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1872-1875
    • /
    • 1998
  • In the industrial motor drive system, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. Recently, there are new methods which estimate unknown state variables by using a reduced order observer and feedback these state variables by using a pole placement design method. But there is a trade-off between the fast command following property and the attenuation of disturbances and vibrations in these design methods. In this paper, the vibration suppression control of a two-mass system using a reference model is proposed. Because of using a reference model, the proposed control satisfy the fast command following property and the attenuation of disturbances and vibrations. Control parameter can be changed to maintain high system performance in control using a reference model. Experimental results show the validity of the proposed state feedback control using a reference model, and this controller is compared with the state feedback controller.

  • PDF

A novel reference model for dental scanning system evaluation: analysis of five intraoral scanners

  • Karakas-Stupar, Irina;Zitzmann, Nicola Ursula;Joda, Tim
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • PURPOSE. The aim of this in vitro study was to investigate the accuracy (trueness and precision) of five intraoral scanners (IOS) using a novel reference model for standardized performance evaluation. MATERIALS AND METHODS. Five IOSs (Medit i500, Omnicam, Primescan, Trios 3, Trios 4) were used to digitize the reference model, which represented a simplified full-arch situation with four abutment teeth. Each IOS was used five times by an experienced operator, resulting in 25 STL (Standard Tessellation Language) files. STL data were imported into 3D software (Final Surface®) and examined for inter- and intra-group analyses. Deviations in the parameter matching error were calculated. ANOVA F-test and Kruskal-Wallis test were applied for inter-group comparisons (α = .05); and the coefficient of variation (CV) was calculated for intra-group comparisons (in % ± SD). RESULTS. Primescan (matching error value: 0.015), Trios 3 (0.016), and Trios 4 (0.018) revealed comparable results with significantly higher accuracy compared to Medit i500 (0.035) and Omnicam (0.028) (P < .001). For intra-group comparison, Trios 4 demonstrated the most homogenous results (CV 15.8%). CONCLUSION. The novel reference model investigated in this study can be used to assess the performance of dental scanning technologies in the daily routine setting and in research settings.

Feedback Model Updating: Application to Indeterminate Structure (궤환 모델 개선법 : 부정정 구조물에의 적용)

  • 정훈상;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.59-64
    • /
    • 2003
  • The parameter modification of the initial FEM model to match it with the experimental results needs the modal information and the modal sensitivity matrix to the parameter change. There are two cases this methodology is ill-equip to deal with; the deficiency of the necessary modal information and the ill-conditioning of the sensitivity matrix. In this research, a novel concept of the feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains as the reference signal is proposed. There are 2 advantages using this external feedback excitation. First, we can use the change of the system response such as modal data by the active energy Path from the sensor to the exciter. This change of the system response can be additional clues to the system dynamics that we want to know. Secondly, the external energy Path alternates the offset of the Parameter change to the system response. That means the modal sensitivity of the parameters becomes different from the original sensitivities by the feedback excitation. Through the feedback loop, we can change the similar modal sensitivities of some updating parameters and consequently discriminate the parameters using the closed-loop modal data. To demonstrate the discrimination performance, the parameter estimation of an indeterminate structure by use of the feedback method is introduced.

  • PDF

Detecting the Influential Observation Using Intrinsic Bayes Factors

  • Chung, Younshik
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.81-94
    • /
    • 2000
  • For the balanced variance component model, sometimes intraclass correlation coefficient is of interest. If there is little information about the parameter, then the reference prior(Berger and Bernardo, 1992) is widely used. Pettit nd Young(1990) considered a measrue of the effect of a single observation on a logarithmic Bayes factor. However, under such a reference prior, the Bayes factor depends on the ratio of unspecified constants. In order to discard this problem, influence diagnostic measures using the intrinsic Bayes factor(Berger and Pericchi, 1996) is presented. Finally, one simulated dataset is provided which illustrates the methodology with appropriate simulation based computational formulas. In order to overcome the difficult Bayesian computation, MCMC methods, such as Gibbs sampler(Gelfand and Smith, 1990) and Metropolis algorithm, are empolyed.

  • PDF

A speed estimate. design using MRAC(Model Reference Adaptive Control) for Sensorless Vector Control (MRAC(Model Reference Adaptive Control)를 이용한 센서리스 벡터제어 속도추정기설계)

  • 최승현;강대규;박정환;이성근;김윤식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.562-567
    • /
    • 2000
  • This paper proposed a speed estimator using MRAC(Model Reference Adaptive Control) for sensorless vector control. It is robust for parameter variation and the estimated speed is used as feedback in a vector control system. Computer simulation is presented to confirm the theoretical analysis.

  • PDF

Model reference adaptive controller design for missiles with nonminimum-phase characteristics (비최소 위상 특성을 갖는 유도탄의 기준 모델 적응 제어기 설계)

  • 김승환;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.624-629
    • /
    • 1993
  • In this paper, a model reference adaptive control scheme is applied to the normal acceleration controller for missiles with nonminimum-phase characteristics. The proposed scheme has an auxiliary compensator, an identifier of plant parameters and a feedback control law. First, plant parameters are estimated by the identifier and based the parameter estimates the coefficients of the compensator are calculated so that the estimated plant model with the compensator becomes minimum-phase. In this calculation, Nehari Algorithm is used. Parameters of the control law are then updated so that the extended plant model follows the given reference model. It is shown that the performance of the designed controller is satisfied via computer simulations.

  • PDF

Bayesian Hypothesis Testing for Homogeneity of the Shape Parameters in the Gamma Populations

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1191-1203
    • /
    • 2007
  • In this paper, we consider the hypothesis testing for the homogeneity of the shape parameters in the gamma distributions. The noninformative priors such as Jeffreys# prior or reference prior are usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian testing procedure for the homogeneity of the shape parameters based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and a real data example are provided.

  • PDF

Model Reference Adaptive Control Using Non-Euclidean Gradient Descent

  • Lee, Sang-Heon;Robert Mahony;Kim, Il-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.330-340
    • /
    • 2002
  • In this Paper. a non-linear approach to a design of model reference adaptive control is presented. The approach is demonstrated by a case study of a simple single-pole and no zero, linear, discrete-time plant. The essence of the idea is to generate a full non-linear model of the plant dynamics and the parameter adaptation dynamics as a gradient descent algorithm with respect to a Riemannian metric. It is shown how a Riemannian metric can be chosen so that the modelled plant dynamics do in fact match the true plant dynamics. The performance of the proposed scheme is compared to a traditional model reference adaptive control scheme using the classical sensitivity derivatives (Euclidean gradients) for the descent algorithm.