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Detecting the Influential Observation
Using Intrinsic Bayes Factors '

Younshik Chung'

ABSTRACT

For the balanced variance component model, sometimes intraclass cor-
relation coefficient is of interest. If there is little information about the
parameter, then the reference prior(Berger and Bernardo, 1992) is widely
used. Pettit nd Young(1990) considered a measure of the effect of a single
observation on a logarithmic Bayes factor. However, under such a reference
prior, the Bayes factor depends on the ratio of unspecified constants. In or-
der to discard this problem, influence diagnostic measures using the intrinsic
Bayes factor(Berger and Pericchi, 1996) is presented. Finally, one simulated
dataset is provided which illustrates the methodology with appropriate sim-
ulation based computational formulas. In order to overcome the difficult
Bayesian computation, MCMC methods, such as Gibbs sampler(Gelfand
and Smith, 1990) and Metropolis algorithm, are employed.

Keywords: Conditional predictive ordinate; Gibbs sampler; Intraclass correlation
coefficient; Intrinsic Bayes factor; Metropolis algorithm: Reference prior: Variance

component model.

1. Introduction

Consider a balanced variance components model
YViy=p+oi+e; for i=1,....I; j=1,...,J, (1.1)

where j is the mean effect, and the random effects «;’s are independent and
identically distributed as N(0,02). ¢;;’s are assumed to be independent and

identically distributed as N (0,0?). The ;s are also assumed to be independent of
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€;’s. Further the parameters (yt, 02, ¢%) are unknown. Define variance-covariance
structure for the y;;’s as

0, i#74,

covlyijyp ) =14 pot i=i'j#

ot i=i,j=j.
Thus ¢? is the variance of each Yij, and p is the correlation coefficient between
Yi;'s within the same class. Usually we are interested in the inference concerning
the variance ratio ¢ = Jo?/0? and the intraclass correlation coefficient p =
ai/(as 4 a?).

In this paper, we consider detecting the influential observation under default
prior in a variance component model. Since our focus is fully Bayesian. the choice
of priors is very important. Chaloner (1987) considered estimators of p using uon-
informative prior distributions which do not depend on the sample size. Palmer
and Broemeling (1990) used the inverted gamma prior distribution for estimation
of intraclass correlation coefficient p. In this case, we consider the reference prior
proposed by Bernardo(1979) for the development of the noninformative prior for
p. The refernce prior algorithm is now quite popular for the development of de-
fault priors for many interesting problems. Berger and Bernardo(1992) extend
Bernardo(1979) algorithm to multi-parameter problem. Sun and Ye(1995) used
Bayesian reference prior approach widely for estimating product of normal means.
Ye(1994) considered the reference prior for the estimation of the ratio of variance
for one-way random effects model. Following Berger and Bernardo(1992)’s algo-
rithm, Chung and Dey(1998) obtained the reference priors for (p. . o2) which

are of the form
T (popa’y = a1+ (J = 1)p) (1 - p)~°, (1.2)

where @, ¢ and d are some non-negative integers.

In this paper our objective is to consider a variance component model from
a Bayesian perspective and devote model diagnostics under default prior specifi-
cation for p using the intrinsic Bayes factor. The paper is organized as follows.
Section 2 reviews the noninformative priors and develops the reference priors for
different parameters. In Section 3, diagnostic measure using intrinsic Bayes factor
is presented and computed using Gibbs sampler. Finally, in Section 4, we exam-
ine measuring the effect of observations on intrinsic Bayes factor to simulated
data(Box and Tiao, 1973).
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2. Reference Priors and Intrinsic Bayes Factor

2.1. Reference Priors

In Bayesian analysis, the choice of prior is very critical. Since there is no pre-
cise information about parameters, we use noninformative priors. Bernardo(1979)
proposed the reference prior as a development of noninformative prior. The key
feature was a possible dependence of the reference prior on specification of param-
eters of interest and nuisance parameters. Berger and Bernardo(1992) extended
their algorithm to multi-parameter problems.

For our balanced variance components model, p = a?/(c? 4 o) is the param-
eter of interest. The reference prior distributions for different groups of ordering
of (1. 0?) and (p, 1, 0%) are found as follows.

Theorem 2.1. For the balanced variance components model in (1.1). if p = py
is given, then the reference prior distribution for any ordered group of (u.o?) is

mo(p, o) x o2 (2.1)

Proof. Its proof is very similar to that of Chung and Dey (1998).

Theorem 2.2. (Chung and Dey, 1998) For the balanced variance component
model, if p = 02/(c% 4 ¢*) is the parameter of interest, then the reference prior
distributions for different groups of ordering of (u, a2, p) are:

Group ordering Reference prior

{p. s, 0} A, 0% u} {(p, 0%), 1} mp oo (14 (J = 1)p)7 (1 -
{p, (1, 0%} 7r-zo<0“3(1+(f~ p)~H(1 - )“
{(p,11), 0%} T3 0731+ (J ~ 1)p)” ?;(
{{p,,0*)} Ty o214 (J = 1)p)” 2'\1—/)) 2,

Note that the Jeffreys’s prior is same as the reference prior 74 for (p. . a?).

2.2, Intrinsic Bayes Factor

Consider a statistical model with data Y and corresponding parameter vector
#. Suppose that we wish to test the null hypothesis Hy versus alternative Hy,
according to a probability density fo(Y'|6o) and f,(Y'|6,) respectively. Given
prior probabilities p(Hp) and p(H;) = 1 — p(Hy), the data ¥ produces posterior
probabilities p(Hy|Y') and p(H;|Y). The Bayes factor, B, in favor of Hy is defined

as

p(HolY)/p(H,|Y) _ mo(Y')
p(Ho)/p(Hy) m(Y)’

B =
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where m(Y) = [ m;(6;) fi(Y'|6;)d6; is the marginal density of ¥ under model
H; and m;(6 ,-) is the prior density of #; under H; for ¢ = 0,1. For instance, an
improper prior for 6; is written as 7V (8;) o g;(6;), where g; is integrable function
over f;-space. It could be expressed that

”iv(g ) = ngz(ez) t=0,1 (23)

If g;(8;) is not integrable , we can treat ¢; as an unspecified constant. However,
Bayes factor in favor of Hy, with respect to these priors,

co J g0(00) fo(Y [80)dfo

B = T (Y1616,

(2.4)

dedends on the ratio of undefind constants ¢g/c;. Recently, to overcome this
problem, various approaches have been advocated. See Aitkin(1991) and Berger
and Pericchi(1996). Now we briefly review the IBF given by Berger and Pericchi
(1996).

Let Y7, = {y(1),y(2),... ,y(L)} denote the set of all minimal training samples,
y(1). That is, a training sample, y(I), is called proper if [ fi(y(0)|6:)7 (8;)d8; <
oo and minimal if it is proper and no subset gives finite ma,rgmals. Berger and
Pericchi (1996) introduced several intrinsic Bayes factors, including arithmetic
intrinsic Bayes factor(AIBF) and geometric intrinsic Bayes factor(GIBF) defined
respectively by

L L
B = 23" Buly) = BN S BY (1) (2.5)
=1 =1
and
L 1 4 L 1
B§ = {[[ Borty}t = BY{[ [ Blb v} = (2.6)
=1 =1
where
N _ () _ [ foylbo)md (Bo)dby NN CI0)
B0 = )~ Thupsp@nas, ¢ Do) = e m

3. Diagnostic measure using Intrinsic Bayes factor

Consider the following test for Hp(model Mp is chosen) against H; (model M,
is chosen). Then in order to measure the effect on the Bayes factor of observation
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d, Pettit and Young(1990) suggested the quantity k4 defined by
kg = logBFy, — logBF\?, (3.1)

where BFy; and BFé;i) denote the Bayes factors with all data and with all data
excluding observation d respectively. In different way,

mo(y) ~log mo(y(d)) ~ log mo(y) oe mq(y)

kd = log .
n1(y) m1(Ya)) mo(Y(a)) mi(yay)

(3.2)

whero y is the full data and y(4) is all the data excluding observation d and
mi(y) = [ fi(ylO:)mi(6;)db; for i = O 1.

Thlb ka 1S explessed as the difference in the logarithms of the conditional
predictive ordinates(CPQO) for the two models which was discussed in Gelfand,
Dey and Chang(1992). Also, Pettit(1990) mentioned that the CPO is a measure
to detect surprising observations. Thus large values of |ky| indicate that such
observation d has a large influence on the Bayes factor.

3.1 Diagnostic measures based on IBF

Let y;, = {y{1),4(2),...,y(L)} denote the set of all minimal training samples,
y(1), of all data y and let yayp = {ya)(1) ya)(2), - y@)(M)} the set of all
minimal training samples, y(q4)(m), of all data excluding ObSGIthlOIl d.

For notational convenience, let

M
BAl, = W Z Bot(ya)(m)) = B4, Vi Z B (ya(m) (3.3)
m=1 m=1
and
M X M ] 1
Bila = {H Boi (yiay(m))}¥ = Bgj ) H B (yiay(m)) } o1, (3.4)
m=] m=1
where
, v 60) 19 i mN (i ,
B = mo (y(d)) I fo(y(ayfo) g’ (8u)dbo and BN (yiay(m)) = '711\(9(@(”?)).
Va) [hAHl d)igl ( 1)d6, my (Y(ay(m))

Following Pettit and Young(1990) and Dey(1996), we define the diagnhostic mea-
sures Kj” and KdGI obtained by deleting dth observation as

K} =log By} —log Bi\a) (3.5)
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and
= log Bg)' ~ log B{i{,). (3.6)

where Bgil and B§) are in (2.6) and (2.7) respectively.

For interpretation of K4, a negative Ky indicates less support for model M,
from observation d and a positive Ry suggests that the dth observation favors
My. To assess whether deletion of observation d changes our beliefs we have to
compare Kq with log B3\l or log B§: in (3.5) and (3.6) respectively. This can be
done by plotting log B\ and K.

Thus, a plot of K4 against the observation number can be used as a model-
selection criterion. If we observe more positive Ky’s than negative ones, the
data support Mgy more than Mj; otherwise, the data support M, more. We can
extend Ky to the case when we omit two or more observations and measure their
joint effect. To avoid a combinatorial explosion, we should consider the order to
delete observations. For simple possibility to decide the order, we can delete the
observation with maximum value of |k first. Thus, we would have a sequence

"= log By ~log Byl Ki' =log B\, — log B4 (3.7)
and
= log B§)' - log Bi{y), K& = log By — log Bi\{,.)- (3.8)

Here, By (4e) denotes the Bayes factor with all data excluding observations d and

€.

3.2 Computation of the measures K 47 and K(?I

Suppose that we want to test Hg : p = pg versus Hy : p # pg where pg is
a known specified number. In each case, the reference priors in Theorems 2.1
and 2.2 are assumed. That is, mo(y,0?) o 02 is assumed under Hq and for
Hy, n(u,0?,p) o< a7 (1 + (J — 1)p)~¢(1 — p)~? is given where d = 2 — ¢ and
(a,c) =(2,1),(2,1.5),(3,1) or (3,1.5).

For our model (1.1), the likelihood function of parameters (i, o2, p) is given
by

. IJ — I IJ(1 —
W(p,o%p) = (az)‘T(l—%({p—l)ﬁ)-a {_L[~_@_fil

J(l _ I [ J
AR Z P+ i - vt

p =1 =1 j:l
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where y;. = ijl yi;/J and y. = ZZ-I:I vi. /1.

Lemma 3.1. The marginal densities of Y under Hy and H; are given respectively

by
N - _i=1 -1 1 - ,00 _
v) = - S p0) T (oW 3.9
mp (y) = K (14 (J = Dpo)™ = (1= po) = (g —yy p WA ) (3-9)
and
N _ T patld=2 a+1J -3
miw) = ey 17 > )
atlJ—3
I 2 .
X ;J};—; Yis — Yi-) Bq,p(l —l-.VV_)’ (3.10)
where p = .l(I+‘)c—3) q= %(I(J—1)+a—2c), B, s(2 J =1 }3=1dt,
{J--1
121 1(yz - / IJ-—I ‘ y U 2 - T
W= Zz 12:] 1 y;_) lh) T2 ) Zz:l ZJ:I(-U'J !/4) }
Furthermore,
a;?
By _ M0 W) JWPT (5L ii (Lo
- = a yz Yi.) _ 72
: ™y (y) 24 2F(iLJ_ i=1 j=1 T 1+ (J—1)py
% (3.11)

1— 1J—
Bq,p(W1+1)(1+(J~p(l))po W+1) e

Proof. Its proof is straightforward.

From (3.9) and (3.10), MTS size is the minimal number of sample size such
that both m{ (y) and m¥ (y) are finite. That is, for a = 2 and 3, er%é > 0.
Therefore, MTS size is (1,2) or (2,1). Let I,,, and .J,, denote the minimal training
sample sizes of T and J, respectively. But it may be chosen for MTS size to be
I, = Jm = 2 in our model in order to combine the number of effects and the
repeated observations.

For notational convenience, define p = %(I +2c—3),¢q= %[I(J -~ 1) + a - 2¢},

| . 1 JmZ Y (yi—y )P
"m:_Im 2c—3), m:_Ime‘l a—2 d W, = st .
P = gl 420 = 8), i = 3l (U = 1) + 0 = 2] and Woy = sy CO2 s

Then, for the minimal training sample y(), the marginal den%mes of Y (l) are
obtained from (3.9) and (3.10) by replacing Y, W, I and J in (3.9) and (3.10)
with Y (1), Wi, I, and J,,, respectively. Then the following collorary is obtained.
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Collorary 3.1. For testing Hy versus H,; as above,

a=—2
, T WE D (Lndmaty [ I I i 1= po iy
1/Bio(y(l)) = — =l
/Broly(t) 20720 (4talm3) Z;JZI = STy
1
X 1 l—po _mim—_l (3-12)
BmePm(W",n+1)(1+(J7n_1) W7n+1)

Therefore, Béll[ and Bgil are directly computed from Lemma 3.1 and Collorary
3.1
In order to compute B(‘f{(d) and Bgzl(d)v the following Lemma is needed.

Lemma 3.2. Under the same above hypothesis, BS‘IIM) and Bg;ll(d) can be ex-

pressed as
M
71'0(#’02) 1 1
By = m(polya) By (5~ —43.13)
( 71t 0%1p0) " M= e (polygay (1)) Eaym (577 )
and
M
mo(p, 0?) 1 I
B§ty = milpolya) Ea(—r———1]1 —— T,
( 71k, 2%lpa) 22w (polyiay (M) By (melemrls)
(3.14)

where B4y and E(g),, denote the expectations with respect to densities my (s, a?po. Y(ay)

and 7y (p, o lpo,y(d)(m)), respectively.
Proof. Recall that Bo; (y(!)) = BY Biy,(y(1)). By Verdinelli and Wasserman (1995).

‘ mo{t, o) N molp, 0%) 1y
BY == E(——————) and B N)y=I[r D) E(————)]",
01 1(p0|y) (Wl(,‘i»02ip0)) lO(y( )) [ l(pOIy( )) I(M(M,Uz\[)o))]
where F and E; denote the expectations with respect to densities (i, a2|po, y)
and ;1 (u, a2|po, y(1)), respectively, which completes the proof.
In particular, if 7 (u, 0%|po) = wo(u, 0?), then

Al T Po\y(d)
BOI( A{ Z ﬂ'l Po!y )) (315)
and
M . l
Bgla) = m(poly){ I:[l W}V. (3.16)
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Finally we have to estimate 71(p | y(a)), 71(p | Y(a)(m)), E(4 (—"1(—“—”?—)) and

W02 po)

2
E(d)m(;rl—"(‘%%) in (3.13) through (3.16). These four quantities are based on
the full data excluding the observation d. Since we delete the data d from the
balanced random effect model, in general we may cousider the unbalanced model

as follows:
Y,=p+oai+e€; forg=1,... n; ;i=1,...,1. (3.17)

Let N = Zfsl n;. Then under the prior 7, (p, u,0?%) x 0791+ (J — 1)p)~(1 —
p)~¢, the posterior joint density given all data excluding observation d is

(oo ly) < (07 (L4 (]~ 1)p) (1 - p) III (n; ~1)p)"2
1 = I n;
GXP{— Zl nl—l i~—H)2+ZZ Yij ~ Yir)
=1 1=1 j=1
= lgy(p, p, %) mi(p, p,0?). (3.18)

Now, we can apply Gibbs sampler to compute 71(pg|y(4y). The full conditional
densities are given as follows:

1 < n; (1 —p)
2 ol A N2
[ulpy o™ ya)] o exp{~5— 2T 1)p(yz. 1)}
1 Ny
B N(Zizqun,%m o? )
- I n; ! I n; !
Zi'—"l 1+(n;—1)p (1 - /)) Zi:] 14+(n;~1)p
(3.19)
. Nida-2
[02“/’7 Py y(d)] = IG(_—2~—7b)a (3.20)
and
I ! 1
ol o yg)) o (L4 (T =) (1=pz  JJ(1 + (ni = 1)p) 72
i=1
1 I
- Y 5
x crp{-5- ZZH ,Ll_l p(yz. MY (3.21)

=1
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where b = 2[3°7_ oy (Yig—yi) +Zz . % !, Using Chen(1994)

we propose the estimate of 71 (poly(a)) as follows:

2(9))

(3.22)

G
ld(POaH(g) 2AD) 7y (po, 119,
71(PolY(a) Z ple 2(5)) ()

d)( , 19 a2 (pla) pl9) o2le ))

where {p(9), ;(9) 529} is Gibbs output from the full conditional densities in
(3.19) through (3.21) where liay(ps it,0%) and m1(p, p,0%) are given in (3.18).
Choosing a good function of ¢ can be quite difficult. In some cases a reason-
able choice ¢ is to use a normal density whose mean and variance are based on
the sample mean and sample covariance of Gibbs output. Also we can estimate
71 (poly(a)(m)) by the similar method. Since the minimal training sample size
of the unbalanced random effects model is exactly same as that of the balanced
random effects model, we can put I = 2. J = 2 and n; = 2 in the equations (3.19),
(3.20), and (3.21). For the notational convenience, we consider yi1, ¥12, y21 and
Y22 as each minimal training sample. Then the full conditional distributions are

given by
e o’
[klp. %, yay(m)] = N (Z5—3~ ) (3.23)
St U-n Xl
2 ! 2+ a v
[o%]k, oy gy ()] = IG (=5, 0), (3.24)
and
[l a? gy (m)] o (14 p) 7711 = p)!
2
1 (1-p) 2
X erpi—— Y — , 3.25
{ ) T, W m (3.25)
where b = 2[3°2 | Z?:l(yij — )+, 1+p yi. — p)?)~. For simulating p

2
from [p|p, 0%, y(@)(m)] in (3.25), consider [t|u, & 7y(d)(m)] x tc_lea*p{—Zﬁ%'——f)—

with t = (1 — p)/(1 + p) where 0 < t < 1. Hence given y,0? and ygy(m), the
density of t is obtained as follows;
2 2
° 1 izt Wi T 1)y (3.26)

[tln, 0%, yiay(m)] = l—_—&mtc exp{ g



Detecting Influential on random effect model 91

Recall that from Theorem 2.2, we have

m (0% p) o 014 (J — 1)p) (1 — p) ¢

where d =2 — ¢ and (a,¢) = (2,1),(2,1.5),(3,1) or (3,1.5). Therefore, there are
two choices of the values of ¢. That is, ¢ =1 or 1.5. For ¢ = 1, since

_“_._'_,____lgl/p{__._..z_ﬁ_._
1 —exp(—1) i

t},

[tl/t,Uz,y(d)(m)] =

we can use the inverse cumulative distribution function(CDF) method to simulate
t from [t|u,o?, Y(a){m)]. Finally, set p = (1 ~t)/(1 +t) where such p is consid-
ered as random variate from [p{u, 0%, yq)(m)]. For ¢ = 1.5, [t{u, 0%, yq(m)] =
Kt leap{—kt} where K~! = jblt%*le:rp{~kt}dt and k = Y0 (v — )*/a*
Let u be the random variate from uniform distribution on (0,1) and G{t) and
F(t) the cumulative distribution functions of Gamma variable with parameters 5’
and k. and of randon variable ¢ given p, o2, Yq)(m), in (3.26) respectively. That

is, G(t Jot Fk(Y 25 L exp(—kz)da and F(t) = s Ka? 'exp{—ka}dr. Thus, us-

3
ing inverse CDF method, u = F(t) = Kl‘(3/2)k”%G(t) implies ¢ = G—I(Tf%)'
2

Then such t is considered as a random variate from the conditional distribution
[t]pe, o2 yqay ()] '
Let {#(91),02(511)};1:1 be the Gibbs output from 7 (u, o?/py.yiay). Then a

Monte Carlo estimate of E(d)(M—)——) is

! (N-U?lno)

G ,
. 1 Wo(;t(gl) gz(gl))
Egy = — 3.27
d) G, 9231 7'('1(“(91 o 2a) 1100) ( )
1
Similar approximation is done for E(4 (%) Thus a Monte Carlo estimate
of E(4),, can be expressed as
B 1 & mo(pl92), g292)) ,
(d)ym = 'G(_z z:l 7T1(/,L(92)’0'2(g2)|p0)’ (3H8)
g2=

where {u(92), a?(gz)}g?:1 is the Gibbs output from the posterior 7 (1, 72| po, Yy (m)).

4. Simulated Data

Now, a dataset (Table 4.1; Box and Tiao, 1973) is simulated as follows. The
simulated dataset consists of six groups of five observations each. The errors
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¢;; were generated from Normal variates with mean 0 and variance o? = 4, the
effects ov; were generated from Normal variates with mean 0 and variance o2 = 2,
and the total effect y was set to be equal to five.

Table 4.1. Generated Data 1

Batch 1 2 3 4 | 5 6
Observations | 7.298 | 5.220 | 0.110 | 2.212 | 0.282 | 1.722
3.846 | 6.556 | 10.386 | 4.852 | 9.014 | 4.782

2.434 | 0.608 | 13.434 | 7.002 | 4.458 | 8.106

9.566 | 11.788 | 5.5104 | 9.288 | 9.446 | 0.758

7.990 | -0.892 | 8.166 | 4.980 | 7.198 | 3.758

Then we have S? = 358.7014 and S = 41.6816 and so their corresponding
mean squares are 14.95 and 8.33 in ANOVA table respectively and the estimates
of 62 and 02 are 6% = 14.95 and 62 = —1.3219 respectively. Thus the estimate
of p is -0.13 which is negative but its true value of p is never negative. To
overcome this problem, we apply our above mentioned Bayesian approach. To
check the effect of observations, we will use the data in Table 4.1 except y;3 which
is 2.434. y;3 is replaced by -3.434. That is, it is assumed that the observation
y13 is generated from the model (1.1) with the same values of parameters with
the total effect ¢ = 0.

Figure 5.1 indicates the values of K&“ in (3.5) for testing Hyp : p = 0.33 against
Hy : p # 0.33, that is, (a.c¢) = (2,1) is chosen as prior of p in Hy. Note that
all values of Ké“ are positive except the value corresponding to the ohservation
y13. More carefully, the value corresponding to the observation yy3 is very small.
That is reasonable because yy3 is far from all remaining data. It will be noticed
that the data indeed support Hop: p = 0.33.

log By = 1.0086 is the reference line in Figure 4.1. Except y)3, the remaining
values of K@}/ are in the near neighborhood of reference point. Also. as Figure
4.1, there is a large effect on Bg! = 10.02 when we omit observation 3 (y13) on
the first column, K4/ = —1.095. We may regard the data as being p = 0.33 with

one influential observation.
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Figure 5.1. Values of K}/
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