• Title/Summary/Keyword: reductive dissolution

Search Result 23, Processing Time 0.023 seconds

Reductive Dissolution of Spinel-Type Iron Oxide by N2H4-Cu(I)-HNO3

  • Won, Hui Jun;Chang, Na On;Park, Sang Yoon;Kim, Seon Byeong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.387-393
    • /
    • 2019
  • A N2H4-Cu(I)-HNO3 solution was used to dissolve magnetite powders and a simulated oxide film on Inconel 600. The addition of Cu(I) ions to N2H4-HNO3 increased the dissolution rate of magnetite, and the reaction rate was found to depend on the solution pH, temperature, and [N2H4]. The dissolution of magnetite in the N2H4-Cu(I)-HNO3 solution followed the contracting core law. This suggests that the complexes of [Cu+(N2H4)] formed in the solution increased the dissolution rate. The dissolution reaction is explained by the complex formation, adsorption of the complexes onto the surface ferric ions of magnetite, and the effective electron transfer from the complexes to ferric ions. The oxide film formed on Inconel 600 is satisfactorily dissolved through the successive iteration of oxidation and reductive dissolution steps.

Magnetite Dissolution by Copper Catalyzed Reductive Decontamination (촉매제로 구리이온을 이용한 환원성 제염에 의한 마그네타이트 용해)

  • Kim, Seonbyeong;Park, Sangyoon;Choi, Wangkyu;Won, Huijun;Park, Jungsun;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.421-429
    • /
    • 2018
  • Hydrazine based reductive dissolution applied on magnetite oxide was investigated. Dissolution of Fe(II) and Fe(III) from magnetite takes place either by protonation, surface complexation, or reduction. Solution containing hydrazine and sulfuric acid provides hydrogen to break bonds between Fe and oxygen by protonation and electrons for the reduction of insoluble Fe(III) to soluble Fe(II) in acidic solution of pH 3. In terms of dissolution rate, numerous transition metal ions were examined and Cu(II) ion was found to be the most effective to speed up the dissolution. During the cycle of Cu(I) ions to Cu(II) ions, the released electron promoted the reduction of Fe(III) and Cu(II) ions returned to Cu(I) ion due to the oxidation of hydrazine. In the experimental results, the addition of a very low amount of cupric ion (about 0.5 mM) to the solution increased the dissolution rate about 40% on average and up to 70% for certain specific conditions. It is confirmed that even though the coordination structure of copper ions with hydrazine is not clear, the $Cu(II)/H^+/N_2H_4$ system is acceptable regarding the dissolution performance as a decontamination reagent.

Temperature and Concentration Dependencies of Chemical Equilibrium for Reductive Dissolution of Magnetite Using Oxalic Acid

  • Lee, Byung-Chul;Oh, Wonzin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.187-196
    • /
    • 2021
  • Chemical equilibrium calculations for multicomponent aqueous systems involving the reductive dissolution of magnetite (Fe3O4) with oxalic acid (H2C2O4) were performed using the HSC Chemistry® version 9. They were conducted with an aqueous solution model based on the Pitzer's approach of one molality aqueous solution. The change in the amounts and activity coefficients of species and ions involved in the reactions as well as the solution pH at equilibrium was calculated while changing the amounts of raw materials (Fe3O4 and H2C2O4) and the system temperature from 25℃ to 125℃. In particular, the conditions under which Fe3O4 is completely dissolved at high temperatures were determined by varying the raw amount of H2C2O4 and the temperature for a given raw amount of Fe3O4 fed into the aqueous solution. When the raw amount of H2C2O4 added was small for a given raw amount of Fe3O4, no undissolved Fe3O4 was present in the solution and the pH of the solution increased significantly. The formation of ferrous oxalate complex (FeC2O4) was observed. The equilibrium amount of FeC2O4 decreased as the raw amount of H2C2O4 increased.

Effect of Reductive Salts on Dissolution of ${\alpha}-Fe_2O_3$ in Acidic Solutions (산성용액 내에서${\alpha}-Fe_2O_3$의 용해에 대한 환원성 염의 효과)

  • Jeong-Ik Lee;Lee-Mook Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.194-200
    • /
    • 1983
  • Effect of metallic salts added to the ${\alpha}-Fe_2O_3-HCl\;or\;{\alpha}-Fe_2O_3-H_2SO_4$ reaction systems were investigated by colorimetric and gravimetric determinations. While reductive salts exhibited remarkably enhanced reaction rate, non-reductive salts showed inhibitive results. We supposed that the improvement of dissolution rate of ${\alpha}-Fe_2O_3$ by the addition of $FeCl_2$, a reductive salt, to the ${\alpha}-Fe_2O_3-HCl$ system can be attributed to the formation of chloro-bridge between $Fe^{3+}\;and\; Fe^{2+}$, and therefore some partial electronic charge transfer from $Fe^{2+}\;to\;Fe^{3+}$ on the surface of ${\alpha}-Fe_2O_3$ will be easily achieved through the bridged bond. The transferred charge to the surface will reduce the positive charge of initial $Fe^{3+}$, and also result to reduce the lattice energy of that site. Assuming tothat there is a linear relationship between the lattice energy change and the change of activation energy of the reaction system, the transferred partial electronic charge to $Fe^{3+}$ of ${\alpha}-Fe_2O_3$ surface was calculated to be ca. 0.36e.

  • PDF

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

Predicting As Contamination Risk in Red River Delta using Machine Learning Algorithms

  • Ottong, Zheina J.;Puspasari, Reta L.;Yoon, Daeung;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Excessive presence of As level in groundwater is a major health problem worldwide. In the Red River Delta in Vietnam, several million residents possess a high risk of chronic As poisoning. The As releases into groundwater caused by natural process through microbially-driven reductive dissolution of Fe (III) oxides. It has been extracted by Red River residents using private tube wells for drinking and daily purposes because of their unawareness of the contamination. This long-term consumption of As-contaminated groundwater could lead to various health problems. Therefore, a predictive model would be useful to expose contamination risks of the wells in the Red River Delta Vietnam area. This study used four machine learning algorithms to predict the As probability of study sites in Red River Delta, Vietnam. The GBM was the best performing model with the accuracy, precision, sensitivity, and specificity of 98.7%, 100%, 95.2%, and 100%, respectively. In addition, it resulted the highest AUC of 92% and 96% for the PRC and ROC curves, with Eh and Fe as the most important variables. The partial dependence plot of As concentration on the model parameters showed that the probability of high level of As is related to the low number of wells' depth, Eh, and SO4, along with high PO43- and NH4+. This condition triggers the reductive dissolution of iron phases, thus releasing As into groundwater.

Effect of Organic Acids on Cr(III) Oxidation by Mn-oxide

  • Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.41 no.4
    • /
    • pp.241-245
    • /
    • 1998
  • Two oxidation states of chromium commonly occur in natural soil/water systems, Cr(III) and Cr(VI). The oxidized form, Cr(VI), exists as the chromate ion and is more mobile and toxic than Cr(III). Therefore oxidation of Cr(III) by various Mn-oxides in natural systems is a very important environmental concern. Organic substances can inhibit the Cr(III) oxidation by binding, Cr(III) strongly and also by dissolving Mn-oxides. Most of Cr(III) oxidation studies were carried out using in vitro systems without organic substances which exist in natural soil/water systems. In this study effect of organic acids - oxalate and pyruvate - on Cr(III) oxidation by $birnessite({\delta}-MnO_2)$ was examined. The two organic acids significantly inhibited Cr(III) oxidation by birnessite. Oxalate showed more significant inhibition than pyruvate. As solution pH was lowered in the range of 3.0 to 5.0, the Cr(III) oxidation was more strongly depressed. Addition of more organic acids reduced the Cr(III) oxidation mare extensively. Different inhibition effects by the organic acids could be due to their ability of reductive dissolution of Mn-oxides and/or Cr(III) binding. Organic acids dissolved Mn-oxide during the Cr(III) oxidation by the oxide, Dissolution by oxalic acid was much greater than that by pyruvate, and the dissolution was more extensive at lower pH. Inhibition of Cr(III) oxidation was parallel to the dissolution of Mn-oxide by organic acids. Although the effect of Cr(III) binding by organic acids on Cr(III) oxidation is not known yet, Mn-oxide dissolution by organic acids could be a main reason for the inhibition of Cr(III) oxidation by Mn-oxide in presence of organic acids. Thus oxidation of Cr(III) to Cr(VI) by various Mn-oxides in natural systems could be much less than the oxidation estimated by in vitro studies with only Cr(III) and Mn-oxides.

  • PDF

Recovery of Platinum from Spent Petroleum Catalysts by Substrate Dissolution in Sulfuric Acid

  • Lee, Jae-Chun;Jinki Jeong;Kim, Wonbaek;Jang, Hee-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.472-477
    • /
    • 2001
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of precious metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina substrate with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid. and pulp density on the dissolution of substrate was investigated. When the substrate of platinum catalyst was ${\gamma}$-AI$_2$O$_3$ about 95% alumina was dissolved in 6.0M sulfuric acid at 10$0^{\circ}C$ for 2 hours. When the substrate was the mixture of ${\gamma}$-A1$_2$O$_3$and $\alpha$-A1$_2$O$_3$about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was obtained as byproduct.

  • PDF

Equilibrium calculations for HyBRID decontamination of magnetite: Effect of raw amount of CuSO4 on Cu2O formation

  • Lee, Byung-Chul;Kim, Seon-Byeong;Moon, Jei-Kwon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2543-2551
    • /
    • 2020
  • Calculations of chemical equilibrium for multicomponent aqueous systems of the HyBRID dissolution of magnetite were performed by using the HSC Chemistry. They were done by using a Pitzer-based aqueous solution model with the recipe of raw materials in experiments conducted at KAERI. The change in the amounts of species and ions and the pH values of the solution at equilibrium was observed as functions of temperature and raw amount of CuSO4. Precipitation of Cu2O occurred at a large amount of CuSO4 added to the solution, while no precipitation of Cu(OH)2 was found at any amounts of CuSO4. The E-pH diagrams for Cu were constructed at various Cu concentrations to provide the effect of the Cu concentration on the pH values at boundaries where the coexistence of Cu+ ion and Cu2O solid occurred. To prevent Cu+ ions from being precipitated to Cu2O, the raw amount of CuSO4 should be adjusted so that the pH value of the solution from the equilibrium calculation is less than that from the E-pH diagram. We provided guidelines for the raw amount of CuSO4 and the pH value of the solution, which prevent the formation of Cu2O precipitates in the HyBRID dissolution experiments for magnetite.

Mineral Phase Transitions of Jarosite Substituted by Oxyanions during the Reductive Dissolution Using Oxalate Solution (옥살레이트 용액을 이용한 환원성 용해 시 산화음이온으로 치환된 자로사이트의 광물 상변화)

  • Lee, Myoungsin;Lee, Dongho;Chun, Herin;Kim, Yeongkyoo;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2021
  • The SO4 in the jarosite structure can be substituted by other oxyanions, and therefore, the transition of jarosite to goethite plays a very important role in controlling the behavior of oxyanions. In this study, the phase change according to the species of the oxyanion in jarosite and the related behavior of the oxyanion was studied by mineralogical and geochemical methods when jarosite, which is coprecipitated with various oxynions, undergoes a phase change by a reductive dissolution. Jarosite substituted by five oxyanions by 5 mol% was used in this study. The mineral phase change induced by reductive dissolution using ammonium oxalate was investigated, and the order of phase transition rate of jarosite to goethite was MoO4-jarosite ≥ SeO4-jarosite ≥ CrO4-jarosite > pure jarosite > SeO3-jarosite > AsO4-jarosite, showing that the transition rates vary depending on the substituted oxyanion. The resultant concentration of the leached Fe was slightly different depending on the type of oxyanion and time but did not show a noticeable difference. The concentration of each oxyanion leached according to the change of the mineral phase showed that the order of concentration of oxyanions was Mo > Se(SeO3) > As > Se(SeO4) > Cr in general, and showed a slight increase with time. This trend was related to the species of oxyanions rather than mineral phase change. The results of this study showed that the phase transition of jarosite to goethite was affected by the species of oxyanions, but this tendency did not affect the concentrations leached oxyanions.