Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20191510301310).
References
- C. Kim and H. Kim, "Study on Chemical Decontamination Process Based on Permanganic Acid-Oxalic Acid to Remove Oxide Layer Deposited in Primary System of Nuclear Power Plant", J. Nucl. Fuel Cycle Waste Technol., 17(1), 15-28 (2019). https://doi.org/10.7733/jnfcwt.2019.17.1.15
- H. Ocken. Decontamination Handbook, Economic Policy Research Institute Report, TR-112352 (1999).
- R. McGrath and J. Cabrera. Nuclear Power Plant Full System Chemical Decontamination Experience Report, Economic Policy Research Institute Report, 21-43, TR-1019230 (2009).
- T.A. Beaman and J.L. Smee. Evaluation of the Decontamination of the Reactor Coolant Systems at Maine Yankee and Connecticut Yankee, Economic Policy Research Institute Report, TR-112092 (1999).
- D. Well. Recent Chemical Decontamination Experience, Economic Policy Research Institute Report, 3002000555 (2013).
- D.H. Lee. Analysis of Basic Requirements for Kori-1 Full System Decontamination, Korea Hydro & Nuclear Power Central Research Institute Report, 2015-50003339-0488TC (2015).
- J.Y. Jung, S.Y. Park, H.J. Won, S.B. Kim, W.K. Choi, J.K. Moon, and S.J. Park, "Corrosion Properties of Inconel-600 and 304 Stainless Steel in New Oxidative and Reductive Decontamination Reagent", Met. Mater. Int., 21(4), 678-685 (2015). https://doi.org/10.1007/s12540-015-4572-x
- J.K. Moon, S.B. Kim, W.K. Choi, B.S. Choi, D.Y. Chung, and B.K. Seo, "The Status and Prospect of Decommissioning Technology Development at KAERI", J. Nucl. Fuel Cycle Waste Technol., 17(2), 139-165 (2019). https://doi.org/10.7733/jnfcwt.2019.17.2.139
- K.S. Pitzer, "Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations", J. Phys. Chem., 77, 268-277 (1973). https://doi.org/10.1021/j100621a026
- C.E. Harvie and J.H. Weare, "The Prediction of Mineral Solubilities in Natural Waters: the Na-K-Mg-Ca-Cl-SO4-H2O System From Zero to High Concentration at 25℃", Geochim. Cosmochim. Acta, 44(7), 981-997 (1980). https://doi.org/10.1016/0016-7037(80)90287-2
- C.E. Harvie, N. Moller, and J.H. Weare, "The Prediction of Mineral Solubilities in Natural Waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O System to High Ionic Strengths at 25℃", Geochim. Cosmochim. Acta, 48(4), 723-751 (1984). https://doi.org/10.1016/0016-7037(84)90098-X
- B.C. Lee, S.B. Kim, and J.K. Moon, "Equilibrium Calculations for HyBRID Decontamination of Magnetite: Effect of Raw Amount of CuSO4 on Cu2O Formation", Nucl. Eng. Technol., 52(11), 2543-2551 (2020). https://doi.org/10.1016/j.net.2020.04.012
- K.S. Pitzer, Thermodynamics, 3rd ed., McGraw-Hill, New York (1995).
- K.S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd ed., CRC Press, Boca Raton, FL (1979).
- J.M. Prausnitz, R.N. Lichtenthaler, and E. Gomes de Azevedo, Molecular Thermodynamics of Fluid- Phase Equilibria, 3rd ed., Pearson Education, London (1999).
- J.F. Zemaitis, Jr., D.M. Clark, M. Rafal, and N.C. Scrivner, Handbook of Aqueous Electrolyte Thermodynamics, Wiley-AIChE, Hoboken, NJ (1986).
- HSC Chemistry Software, www.outotec.com.