References
- Z. Homonnay, A. Vertes, E. Kuzmann, K. Varga, P. Baradlai, G. Hirschberg, J. Schunk, and P. Tilky, "Effects of AP-CITROX decontamination procedure on the surface oxide layer composition of stainless steel originating from the primary Circuit of a VVER-Type Nuclear Reactor", Journal of Radioanalytical and Nuclear Chemistry, 246(1), 131-136 (2000). https://doi.org/10.1023/A:1006761921604
- S.O. Lee, T. Tran, Y.Y. Park, S.J. Kim, and M.J. Kim, "Study on the kinetics of iron oxide leaching by oxalic acid", International Journal of Mineral Processing, 80(2-4), 144-152 (2006). https://doi.org/10.1016/j.minpro.2006.03.012
- S.O. Lee, T. Tran, B.H. Jung, S.J. Kim, and M.J. Kim, "Dissolution of iron oxide using oxalic acid", Hydrometallurgy, 87(3-4), 91-99 (2007). https://doi.org/10.1016/j.hydromet.2007.02.005
- D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos, "Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions", Hydrometallurgy, 42(2), 257-265 (1996). https://doi.org/10.1016/0304-386X(95)00104-O
- C.A. Figueroa, E.E. Sileo, P.J. Morando, and M.A. Blesa, "Dissolution of nickel rerrite in aqueous solutions containing oxalic acid and ferrous salts", Journal of Colloid and Interface Science, 225(2), 403-410 (2000). https://doi.org/10.1006/jcis.2000.6734
- E. Baumgartner, M.A. Blesa, H. Marinovich, and A.J.G. Maroto, "Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions", Inorganic Chemistry, 22(16), 2224-2226 (1983). https://doi.org/10.1021/ic00158a002
- M.A. Blesa, H.A. Marinovich, E.C. Baumgartner, and A.J.G. Maroto, "Mechanism of dissolution of magnetite by oxalic acid-ferrous ion solutions", Inorganic Chemistry, 26(22), 3713-3717 (1987). https://doi.org/10.1021/ic00269a019
- M. Shailaja and S.V. Narasimhan, "Dissolution kinetics of nickel ferrite in chelating and reducing agents", Journal of Nuclear Science and Technology, 28(8), 748-756 (1991). https://doi.org/10.1080/18811248.1991.9731423
- R. Gilbert and L. Ouellet, "Dissolution of metal oxides accumulated in nuclear steam generators: study of solutions containing organic chelating agents", Nuclear Technology, 68(3), 385-394 (1985). https://doi.org/10.13182/NT85-A33583
- S. Joseph, G. Visalakshi, G. Venkateswaran, and P.N. Moorthy, "Dissolution of hematite in citric acid-EDTA-ascorbic acid mixtures", Journal of Nuclear Science and Technology, 33(6), 479-485 (1996). https://doi.org/10.1080/18811248.1996.9731940
- J. Manjanna, G. Venkateswaran, B.S. Sherigara, and P.V. Nayak, "Dissolution studies of chromium substituted iron oxides in reductive-complexing agent mixtures", Hydrometallurgy, 60(2), 155-165 (2001). https://doi.org/10.1016/S0304-386X(00)00198-5
- R. Larba, I. Boukerche, N. Alane, N. Habbache, S. Djerad, and L. Tifouti, "Citric acid as an alternative lixiviant for zinc oxide dissolution", Hydrometallurgy, 134-135, 117-123 (2013). https://doi.org/10.1016/j.hydromet.2013.02.002
- Y.S. Jun and S.T. Martin, "Microscopic observations of reductive manganite dissolution under oxic conditions", Environmental Science & Technology, 37(11), 2363-2370 (2003). https://doi.org/10.1021/es026254x
- O. Larsen, D. Postma, and R. Jakobsen, "The reactivity of iron oxides towards reductive dissolution with ascorbic acid in a shallow sandy aquifer (Romo, Denmark)", Geochimica et Cosmochimica Acta, 70(19), 4827-4835 (2006). https://doi.org/10.1016/j.gca.2006.03.027
-
S. Banwart, S. Davies, and W. Stumm, "The role of oxalate in accelerating the reductive dissolution of hematite (
${\alpha}-Fe_2O_3$ ) by ascorbate", Colloids and Surfaces, 39(2), 303-309 (1989). https://doi.org/10.1016/0166-6622(89)80281-1 - M. Dos Santos Afonso, C.D. Di Risio, A. Roitberg, R.O. Marques, and M.A. Blesa, "Reductive dissolution of neutron- and gamma-irradiated magnetite", International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 36(3), 457-460 (1990). https://doi.org/10.1016/1359-0197(90)90033-E
- E.B. Borghi, S.P. Ali, P.J. Morando, and M.A. Blesa, "Cleaning of stainless steel surfaces and oxide dissolution by malonic and oxalic acids", Journal of Nuclear Materials, 229, 115-123 (1996). https://doi.org/10.1016/0022-3115(95)00201-4
- D. Garcia, V.I.E. Bruyere, R. Bordoni, A.M. Olmedo, and P.J. Morando, "Malonic acid: A potential reagent in decontamination processes for Ni-rich alloy surfaces", Journal of Nuclear Materials, 412(1), 72-81 (2011). https://doi.org/10.1016/j.jnucmat.2011.02.022
- M.I. Litter, M. Villegas, and M.A. Blesa, "Photodissolution of iron oxides in malonic acid", Canadian Journal of Chemistry, 72(10), 2037-2043 (1994). https://doi.org/10.1139/v94-260
- E. Baumgartner, M.A. Blesa, and A.J.G. Maroto, "Kinetics of the dissolution of magnetite in thioglycolic acid solutions", Journal of the Chemical Society, Dalton Transactions, 9, 1649-1654 (1982).
- E. Baumgartner, J. Romagnolo, and M.I. Litter, "Effect of anionic polyelectrolytes on the dissolution of magnetite in thioglycolic acid solutions", Journal of the Chemical Society, Faraday Transactions, 89(7), 1049-1055 (1993). https://doi.org/10.1039/ft9938901049
- M.A. Blesa, A.J.G. Maroto, and P.J. Morando, "Dissolution of cobalt ferrites by thioglycolic acid", Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82(8), 2345-2352 (1986). https://doi.org/10.1039/f19868202345
- R. Torres, M.A. Blesa, and E. Matijevic, "Interactions of metal hydrous oxides with chelating agents: VIII. Dissolution of hematite", Journal of Colloid and Interface Science, 131(2), 567-579 (1989). https://doi.org/10.1016/0021-9797(89)90199-9
- S. Konishi, K. Saito, S. Furusaki, and T. Sugo, "Sorption kinetics of cobalt in chelating porous membrane", Industrial & Engineering Chemistry Research, 31(12), 2722-2727 (1992). https://doi.org/10.1021/ie00012a014
- S. Joseph, G. Venkateswaran, and P.N. Moorthy, "Dissolution of hematite in mixtures containing different chelating and reducing agents", Journal of Nuclear Science and Technology, 34(9), 917-922 (1997). https://doi.org/10.1080/18811248.1997.9733764
- R.M. Sellers and W.J. Williams, "High-temperature dissolution of nickel chromium ferrites by oxalic acid and nitrilotriacetic acid", Faraday Discussions of the Chemical Society, 77, 265-274 (1984). https://doi.org/10.1039/dc9847700265
- E.B. Borghi, A.E. Regazzoni, A.J.G. Maroto, and M.A. Blesa, "Reductive dissolution of magnetite by solutions containing EDTA and FeII", Journal of Colloid and Interface Science, 130(2), 299-310 (1989). https://doi.org/10.1016/0021-9797(89)90109-4
- H.-C. Chang and E. Matijevic, "Interactions of metal hydrous oxides with chelating agents", Journal of Colloid and Interface Science, 92(2), 479-488 (1983). https://doi.org/10.1016/0021-9797(83)90169-8
- R. Torres, M.A. Blesa, and E. Matijevic, "Interactions of metal hydrous oxides with chelating agents: IX. Reductive dissolution of hermatite and magnetite by aminocarboxylic acids", Journal of Colloid and Interface Science, 134(2), 475-485 (1990). https://doi.org/10.1016/0021-9797(90)90157-J
- J. Manjanna, G. Venkateswaran, B.S. Sherigara, and P.V. Nayak, "Synthesis and dissolution of chromium substituted magnetites in V(II)-EDTA formulation", Indian Journal of Chemical Technology, 9(1), 60-67 (2002).
- B. Ngwack and L. Sigg, "Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes", Geochimica et Cosmochimica Acta, 61(5), 951-963 (1997). https://doi.org/10.1016/S0016-7037(96)00391-2
- K. Dhamodharan, A. Pius, P.K. Sharma, S. Pugazhendi, and V. Vijayakumar, "Electro reductive dissolution of plutonium oxide - A preliminary study", International Journal of Chemical Sciences and Applications, 5, 68-75 (2014).
- L.R. van Loon and W. Hummel. The role of organics on the safety of a radioactive waste repository, Paul Scherrer Institute annual report, INIS-MF-13914 (1994).
- J.Y. Jung, S.Y. Park, H.J. Won, S.B. Kim, W.K. Choi, J.K. Moon, and S.J. Park, "Corrosion properties of Inconel- 600 and 304 stainless steel in new oxidative and reductive decontamination reagent", Metals and Materials International, 21(4), 678-685 (2015). https://doi.org/10.1007/s12540-015-4572-x
- R. Kumar, R.K. Ray, and A.K. Biswas, "Physicochemical nature and leaching behaviour of goethites containing Ni, Co and Cu in the sorption and coprecipitation mode", Hydrometallurgy, 25(1), 61-83 (1990). https://doi.org/10.1016/0304-386X(90)90065-A
-
G. Senanayake, G.K. Das, A. de Lange, J. Li, and D.J. Robinson, "Reductive atmospheric acid leaching of lateritic smectite/nontronite ores in
$H_2SO_4/Cu(II)/SO_2$ solutions", Hydrometallurgy, 152, 44-54 (2015). https://doi.org/10.1016/j.hydromet.2014.12.001 - J.J. Byerley, G.L. Rempel, and G.F. Garrido, "Copper catalysed leaching of magnetite in aqueous sulfur dioxide", Hydrometallurgy, 4(4), 317-336 (1979). https://doi.org/10.1016/0304-386X(79)90031-8
- J.A. Harrison and Z.A. Khan, "The oxidation of hydrazine on platinum in acid solution", Journal of Electroanalytical Chemistry, 28(1), 131-138 (1970). https://doi.org/10.1016/S0022-0728(70)80288-1
- L.C. Rockombeny, J.P. Feraud, B. Queffelec, D. Ode, and T. Tzedakis, "Electrochemical oxidation of oxalic acid and hydrazinium nitrate on platinum in nitric acid media", Electrochimica Acta, 66, 230-238 (2012). https://doi.org/10.1016/j.electacta.2012.01.080
- U. Eisner and E. Gileadi, "Anodic oxidation of hydrazine and its derivatives: Part I. The oxidation of hydrazine on gold electrodes in acid solutions", Journal of Electroanalytical Chemistry, 28(1), 81-92 (1970). https://doi.org/10.1016/S0022-0728(70)80284-4
Cited by
- The Status and Prospect of Decommissioning Technology Development at KAERI vol.17, pp.2, 2019, https://doi.org/10.7733/jnfcwt.2019.17.2.139
- Colorimetric Method for Detection of Hydrazine Decomposition in Chemical Decontamination Process vol.12, pp.20, 2018, https://doi.org/10.3390/en12203967
- 원전 일차계통 HyBRID 제염공정 발생 폐액 내 불순물 제거 및 분해 vol.17, pp.4, 2018, https://doi.org/10.7733/jnfcwt.2019.17.4.429
- Evaluation of reaction spontaneity for acidic and reductive dissolutions of corrosion metal oxides using HyBRID chemical decontamination vol.323, pp.1, 2018, https://doi.org/10.1007/s10967-019-06962-3
- Equilibrium calculations for HyBRID decontamination of magnetite: Effect of raw amount of CuSO4 on Cu2O formation vol.52, pp.11, 2020, https://doi.org/10.1016/j.net.2020.04.012
- Decontamination of a Contaminated RCP Shaft Using the SP-HyBRID Process vol.9, pp.10, 2018, https://doi.org/10.3390/pr9101725