DOI QR코드

DOI QR Code

Magnetite Dissolution by Copper Catalyzed Reductive Decontamination

촉매제로 구리이온을 이용한 환원성 제염에 의한 마그네타이트 용해

  • Received : 2018.08.31
  • Accepted : 2018.11.30
  • Published : 2018.12.31

Abstract

Hydrazine based reductive dissolution applied on magnetite oxide was investigated. Dissolution of Fe(II) and Fe(III) from magnetite takes place either by protonation, surface complexation, or reduction. Solution containing hydrazine and sulfuric acid provides hydrogen to break bonds between Fe and oxygen by protonation and electrons for the reduction of insoluble Fe(III) to soluble Fe(II) in acidic solution of pH 3. In terms of dissolution rate, numerous transition metal ions were examined and Cu(II) ion was found to be the most effective to speed up the dissolution. During the cycle of Cu(I) ions to Cu(II) ions, the released electron promoted the reduction of Fe(III) and Cu(II) ions returned to Cu(I) ion due to the oxidation of hydrazine. In the experimental results, the addition of a very low amount of cupric ion (about 0.5 mM) to the solution increased the dissolution rate about 40% on average and up to 70% for certain specific conditions. It is confirmed that even though the coordination structure of copper ions with hydrazine is not clear, the $Cu(II)/H^+/N_2H_4$ system is acceptable regarding the dissolution performance as a decontamination reagent.

본 연구에서는 하이드라진 기조의 환원성 제염제를 이용한 마그네타이트 산화물의 용해를 다루고 있다. 마그네타이트로부터의 Fe(II) 및 Fe(III)의 용해는 protonation, surface complexation 및 reduction에 의해 지배를 받는다. 하이드라진과 황산은 산소결합을 파괴하거나 Fe(III)이온을 Fe(II)이온으로 환원시키기 위한 수소 및 전자를 각각 제공하게 된다. 속도론적 관점에서 보다 효율적인 용해를 위하여 다수의 전이금속의 영향을 분석하여 Cu(II) 이온이 효과적임을 확인한 바 있다. Cu(I) 이온은 Cu(II) 이온으로 산화되는 동안 전자를 방출하여 Fe(III) 이온을 환원시키고 다시 하이드라진에 의해 Cu(I) 이온으로 환원되게 된다. 본 연구를 통해 제염용액에 매우 적은 양의 구리 이온 (약 0.5 mM)을 첨가함에 따라 평균 40% 용해속도가 향상됨을 확인하였고, 특히 특정 조건에서는 70% 이상 용해속도가 향상 됨을 확인하였다. 구리 이온이 하이드라진과 배위결합을 이루는 지에 대해서는 아직 명확하지 않으나, 분명한 것은 $Cu(II)/H^+/N_2H_4$으로 이루어진 제염제는 효과적인 용해성능을 가지고 있다는 것이다.

Keywords

References

  1. Z. Homonnay, A. Vertes, E. Kuzmann, K. Varga, P. Baradlai, G. Hirschberg, J. Schunk, and P. Tilky, "Effects of AP-CITROX decontamination procedure on the surface oxide layer composition of stainless steel originating from the primary Circuit of a VVER-Type Nuclear Reactor", Journal of Radioanalytical and Nuclear Chemistry, 246(1), 131-136 (2000). https://doi.org/10.1023/A:1006761921604
  2. S.O. Lee, T. Tran, Y.Y. Park, S.J. Kim, and M.J. Kim, "Study on the kinetics of iron oxide leaching by oxalic acid", International Journal of Mineral Processing, 80(2-4), 144-152 (2006). https://doi.org/10.1016/j.minpro.2006.03.012
  3. S.O. Lee, T. Tran, B.H. Jung, S.J. Kim, and M.J. Kim, "Dissolution of iron oxide using oxalic acid", Hydrometallurgy, 87(3-4), 91-99 (2007). https://doi.org/10.1016/j.hydromet.2007.02.005
  4. D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos, "Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions", Hydrometallurgy, 42(2), 257-265 (1996). https://doi.org/10.1016/0304-386X(95)00104-O
  5. C.A. Figueroa, E.E. Sileo, P.J. Morando, and M.A. Blesa, "Dissolution of nickel rerrite in aqueous solutions containing oxalic acid and ferrous salts", Journal of Colloid and Interface Science, 225(2), 403-410 (2000). https://doi.org/10.1006/jcis.2000.6734
  6. E. Baumgartner, M.A. Blesa, H. Marinovich, and A.J.G. Maroto, "Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions", Inorganic Chemistry, 22(16), 2224-2226 (1983). https://doi.org/10.1021/ic00158a002
  7. M.A. Blesa, H.A. Marinovich, E.C. Baumgartner, and A.J.G. Maroto, "Mechanism of dissolution of magnetite by oxalic acid-ferrous ion solutions", Inorganic Chemistry, 26(22), 3713-3717 (1987). https://doi.org/10.1021/ic00269a019
  8. M. Shailaja and S.V. Narasimhan, "Dissolution kinetics of nickel ferrite in chelating and reducing agents", Journal of Nuclear Science and Technology, 28(8), 748-756 (1991). https://doi.org/10.1080/18811248.1991.9731423
  9. R. Gilbert and L. Ouellet, "Dissolution of metal oxides accumulated in nuclear steam generators: study of solutions containing organic chelating agents", Nuclear Technology, 68(3), 385-394 (1985). https://doi.org/10.13182/NT85-A33583
  10. S. Joseph, G. Visalakshi, G. Venkateswaran, and P.N. Moorthy, "Dissolution of hematite in citric acid-EDTA-ascorbic acid mixtures", Journal of Nuclear Science and Technology, 33(6), 479-485 (1996). https://doi.org/10.1080/18811248.1996.9731940
  11. J. Manjanna, G. Venkateswaran, B.S. Sherigara, and P.V. Nayak, "Dissolution studies of chromium substituted iron oxides in reductive-complexing agent mixtures", Hydrometallurgy, 60(2), 155-165 (2001). https://doi.org/10.1016/S0304-386X(00)00198-5
  12. R. Larba, I. Boukerche, N. Alane, N. Habbache, S. Djerad, and L. Tifouti, "Citric acid as an alternative lixiviant for zinc oxide dissolution", Hydrometallurgy, 134-135, 117-123 (2013). https://doi.org/10.1016/j.hydromet.2013.02.002
  13. Y.S. Jun and S.T. Martin, "Microscopic observations of reductive manganite dissolution under oxic conditions", Environmental Science & Technology, 37(11), 2363-2370 (2003). https://doi.org/10.1021/es026254x
  14. O. Larsen, D. Postma, and R. Jakobsen, "The reactivity of iron oxides towards reductive dissolution with ascorbic acid in a shallow sandy aquifer (Romo, Denmark)", Geochimica et Cosmochimica Acta, 70(19), 4827-4835 (2006). https://doi.org/10.1016/j.gca.2006.03.027
  15. S. Banwart, S. Davies, and W. Stumm, "The role of oxalate in accelerating the reductive dissolution of hematite (${\alpha}-Fe_2O_3$) by ascorbate", Colloids and Surfaces, 39(2), 303-309 (1989). https://doi.org/10.1016/0166-6622(89)80281-1
  16. M. Dos Santos Afonso, C.D. Di Risio, A. Roitberg, R.O. Marques, and M.A. Blesa, "Reductive dissolution of neutron- and gamma-irradiated magnetite", International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 36(3), 457-460 (1990). https://doi.org/10.1016/1359-0197(90)90033-E
  17. E.B. Borghi, S.P. Ali, P.J. Morando, and M.A. Blesa, "Cleaning of stainless steel surfaces and oxide dissolution by malonic and oxalic acids", Journal of Nuclear Materials, 229, 115-123 (1996). https://doi.org/10.1016/0022-3115(95)00201-4
  18. D. Garcia, V.I.E. Bruyere, R. Bordoni, A.M. Olmedo, and P.J. Morando, "Malonic acid: A potential reagent in decontamination processes for Ni-rich alloy surfaces", Journal of Nuclear Materials, 412(1), 72-81 (2011). https://doi.org/10.1016/j.jnucmat.2011.02.022
  19. M.I. Litter, M. Villegas, and M.A. Blesa, "Photodissolution of iron oxides in malonic acid", Canadian Journal of Chemistry, 72(10), 2037-2043 (1994). https://doi.org/10.1139/v94-260
  20. E. Baumgartner, M.A. Blesa, and A.J.G. Maroto, "Kinetics of the dissolution of magnetite in thioglycolic acid solutions", Journal of the Chemical Society, Dalton Transactions, 9, 1649-1654 (1982).
  21. E. Baumgartner, J. Romagnolo, and M.I. Litter, "Effect of anionic polyelectrolytes on the dissolution of magnetite in thioglycolic acid solutions", Journal of the Chemical Society, Faraday Transactions, 89(7), 1049-1055 (1993). https://doi.org/10.1039/ft9938901049
  22. M.A. Blesa, A.J.G. Maroto, and P.J. Morando, "Dissolution of cobalt ferrites by thioglycolic acid", Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82(8), 2345-2352 (1986). https://doi.org/10.1039/f19868202345
  23. R. Torres, M.A. Blesa, and E. Matijevic, "Interactions of metal hydrous oxides with chelating agents: VIII. Dissolution of hematite", Journal of Colloid and Interface Science, 131(2), 567-579 (1989). https://doi.org/10.1016/0021-9797(89)90199-9
  24. S. Konishi, K. Saito, S. Furusaki, and T. Sugo, "Sorption kinetics of cobalt in chelating porous membrane", Industrial & Engineering Chemistry Research, 31(12), 2722-2727 (1992). https://doi.org/10.1021/ie00012a014
  25. S. Joseph, G. Venkateswaran, and P.N. Moorthy, "Dissolution of hematite in mixtures containing different chelating and reducing agents", Journal of Nuclear Science and Technology, 34(9), 917-922 (1997). https://doi.org/10.1080/18811248.1997.9733764
  26. R.M. Sellers and W.J. Williams, "High-temperature dissolution of nickel chromium ferrites by oxalic acid and nitrilotriacetic acid", Faraday Discussions of the Chemical Society, 77, 265-274 (1984). https://doi.org/10.1039/dc9847700265
  27. E.B. Borghi, A.E. Regazzoni, A.J.G. Maroto, and M.A. Blesa, "Reductive dissolution of magnetite by solutions containing EDTA and FeII", Journal of Colloid and Interface Science, 130(2), 299-310 (1989). https://doi.org/10.1016/0021-9797(89)90109-4
  28. H.-C. Chang and E. Matijevic, "Interactions of metal hydrous oxides with chelating agents", Journal of Colloid and Interface Science, 92(2), 479-488 (1983). https://doi.org/10.1016/0021-9797(83)90169-8
  29. R. Torres, M.A. Blesa, and E. Matijevic, "Interactions of metal hydrous oxides with chelating agents: IX. Reductive dissolution of hermatite and magnetite by aminocarboxylic acids", Journal of Colloid and Interface Science, 134(2), 475-485 (1990). https://doi.org/10.1016/0021-9797(90)90157-J
  30. J. Manjanna, G. Venkateswaran, B.S. Sherigara, and P.V. Nayak, "Synthesis and dissolution of chromium substituted magnetites in V(II)-EDTA formulation", Indian Journal of Chemical Technology, 9(1), 60-67 (2002).
  31. B. Ngwack and L. Sigg, "Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes", Geochimica et Cosmochimica Acta, 61(5), 951-963 (1997). https://doi.org/10.1016/S0016-7037(96)00391-2
  32. K. Dhamodharan, A. Pius, P.K. Sharma, S. Pugazhendi, and V. Vijayakumar, "Electro reductive dissolution of plutonium oxide - A preliminary study", International Journal of Chemical Sciences and Applications, 5, 68-75 (2014).
  33. L.R. van Loon and W. Hummel. The role of organics on the safety of a radioactive waste repository, Paul Scherrer Institute annual report, INIS-MF-13914 (1994).
  34. J.Y. Jung, S.Y. Park, H.J. Won, S.B. Kim, W.K. Choi, J.K. Moon, and S.J. Park, "Corrosion properties of Inconel- 600 and 304 stainless steel in new oxidative and reductive decontamination reagent", Metals and Materials International, 21(4), 678-685 (2015). https://doi.org/10.1007/s12540-015-4572-x
  35. R. Kumar, R.K. Ray, and A.K. Biswas, "Physicochemical nature and leaching behaviour of goethites containing Ni, Co and Cu in the sorption and coprecipitation mode", Hydrometallurgy, 25(1), 61-83 (1990). https://doi.org/10.1016/0304-386X(90)90065-A
  36. G. Senanayake, G.K. Das, A. de Lange, J. Li, and D.J. Robinson, "Reductive atmospheric acid leaching of lateritic smectite/nontronite ores in $H_2SO_4/Cu(II)/SO_2$ solutions", Hydrometallurgy, 152, 44-54 (2015). https://doi.org/10.1016/j.hydromet.2014.12.001
  37. J.J. Byerley, G.L. Rempel, and G.F. Garrido, "Copper catalysed leaching of magnetite in aqueous sulfur dioxide", Hydrometallurgy, 4(4), 317-336 (1979). https://doi.org/10.1016/0304-386X(79)90031-8
  38. J.A. Harrison and Z.A. Khan, "The oxidation of hydrazine on platinum in acid solution", Journal of Electroanalytical Chemistry, 28(1), 131-138 (1970). https://doi.org/10.1016/S0022-0728(70)80288-1
  39. L.C. Rockombeny, J.P. Feraud, B. Queffelec, D. Ode, and T. Tzedakis, "Electrochemical oxidation of oxalic acid and hydrazinium nitrate on platinum in nitric acid media", Electrochimica Acta, 66, 230-238 (2012). https://doi.org/10.1016/j.electacta.2012.01.080
  40. U. Eisner and E. Gileadi, "Anodic oxidation of hydrazine and its derivatives: Part I. The oxidation of hydrazine on gold electrodes in acid solutions", Journal of Electroanalytical Chemistry, 28(1), 81-92 (1970). https://doi.org/10.1016/S0022-0728(70)80284-4

Cited by

  1. The Status and Prospect of Decommissioning Technology Development at KAERI vol.17, pp.2, 2019, https://doi.org/10.7733/jnfcwt.2019.17.2.139
  2. Colorimetric Method for Detection of Hydrazine Decomposition in Chemical Decontamination Process vol.12, pp.20, 2018, https://doi.org/10.3390/en12203967
  3. 원전 일차계통 HyBRID 제염공정 발생 폐액 내 불순물 제거 및 분해 vol.17, pp.4, 2018, https://doi.org/10.7733/jnfcwt.2019.17.4.429
  4. Evaluation of reaction spontaneity for acidic and reductive dissolutions of corrosion metal oxides using HyBRID chemical decontamination vol.323, pp.1, 2018, https://doi.org/10.1007/s10967-019-06962-3
  5. Equilibrium calculations for HyBRID decontamination of magnetite: Effect of raw amount of CuSO4 on Cu2O formation vol.52, pp.11, 2020, https://doi.org/10.1016/j.net.2020.04.012
  6. Decontamination of a Contaminated RCP Shaft Using the SP-HyBRID Process vol.9, pp.10, 2018, https://doi.org/10.3390/pr9101725