• Title/Summary/Keyword: reductions of harmonic

Search Result 13, Processing Time 0.02 seconds

Research of New Type Small Wind Turbine System (새로운 방식의 소형 풍력발전기 시스템 고찰)

  • Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man;Kim, Byoung-Wook;Kim, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.130-134
    • /
    • 2005
  • The objectives of this study are to improve the aerodynamics performance on the down-wind blade system with folding type blade which consists of the folding type rotor blade, wind vane yawing stabilizer and a bevel gearbox. The aerodynamics performance for the new wind turbine system are compared with those of the conventional up-wind blade system. In addition to, a novel multi voltage inverter system is applied for reductions of harmonic.

  • PDF

A Study on the Harmonics and Voltage Sags Effect by the Series Resonant Filter Application for Personal Computer Loads (컴퓨터 부하의 직렬 동조 필터 적용에 의한 고조파 및 순간전압강하 영향에 관한 연구)

  • Seo, Beom-Gwan;Kim, Kyoung-Chul;Lee, Geun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.460-461
    • /
    • 2006
  • Computer Loads can be found in all of modern society. The switching mode power supplies used in personal computers are major sources of harmonic currents. Harmonic currents can cause lots of harmonic problems such as disruption in computer performance. A series resonant filter is very effective in harmonic reduction for personal computer loads. Voltage sags are short duration reductions in rms voltage. The main causes of voltage sags are faults, motor starting, and transformer energizing. Personal computers are another example of devices sensitive to voltage sags. A serious voltage sag at the terminals way lead mis-operation of the equipment. This paper presents an in depth analysis to evaluate the effect of harmonics reduction based on the IEC 61000-3-2 and the effect of voltage sag using ITI curve by applying a series resonant filter for personal computer loads.

  • PDF

Reduction of Harmonics and Compensation of Reactive Power about Wind Power Generation System Connected to Grid (계통 연계형 풍력발전 시스템의 고조파 저감 및 무효전력 보상)

  • Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man;Park, Hyun-Chul;Song, Seung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1093-1096
    • /
    • 2002
  • In this paper, a novel multi voltage inverter system is proposed for reductions of harmonics, which can compensate reactive power. At first, we remove capacitor at input side for reactive power compensation. Secondly, by adding DC voltage to the filter capacitor, it can control power factors as lead-phase according to alterations of loads at power reception. Thirdly, if winding and single phase-bridge inverter(auxiliary circuit) is installed to DC power for reduction of harmonic, waveform of output voltages become to 36-steps. Thus, SVC(static var compensator) systems which can reduce harmonics are designed.

  • PDF

Harmonic reductions of three-phase phase-controlled converter (3상 컨버터의 Passive Filter와 Notch에 의한 저고조파 저감)

  • Hong, S.T.;Bae, Y.H.;Kim, E.S.;Rim, G.H.;Lee, H.W.;Kwon, S.K.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.856-859
    • /
    • 1993
  • Line-current harmonics resulting from AC to DC power conversion interfere with power system operation and reduce power factor, hence resulting in increasing power source unnecessarily. This paper investigates the harmonic reduction methods of a three-phase phase-controlled converter on AC and DC sides using passive filters and notches.

  • PDF

Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes

  • Y.K.,Chon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.2
    • /
    • pp.19-30
    • /
    • 1988
  • Sectional added masses of an elastic beam vibrating vertically on the free surface in higher harmonic modes are evaluated. Hydrodynamic interactions between neighboring sections, which strip theory ignores, are considered for modal wave lengths of the order of magnitude of cross-sectional dimensions of the body. An approximate solution of modified Helmholtz equation which becomes a singular perturbation problem at small wave lengths is secured to get an analytic expression for added masses attending higher harmonic modes. As a bound of the present theory, the modified Helmholtz equation is solved for the long flat plate vibrating at high frequency on the water surface without any limitations on modal frequency. Finally, extensive series of numerical calculations are carried out for ship-like forms. It is found that when modal wave length is comparable to or shorter than a typical cross-sectional dimension of a body, sectional interaction effects are large which result in considerable reductions in added masses. For a fuller section, the ratio of added mass reduction is greater. In the limit of vanishing sectional area, the added masses approach to that of flat plate of equal beam. It is shown that the added mass distribution for a Legendre modal from can be determined form the present theory and that the results agree with the extensive three-dimensional determination of Vorus and Hilarides.

  • PDF

A Study on the Harmonics and Voltage Sags Effect by the Series Resonant Filter Application for Personal Computer Loads (개인용 컴퓨터 부하의 직렬동조필터 적용에 의한 고조파 및 순간전압강하 영향에 관한 연구)

  • Seo, Beom-Gwan;Kim, Kyung-Chul;Lee, Il-Moo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.36-41
    • /
    • 2006
  • Computer Loads can be found in all of modern society. The switching mode power supplies used in personal computers are major sources of harmonic currents. Harmonic currents can cause lots of harmonic problems such as disruption in computer performance. A series resonant filter is very effective in harmonic reduction for personal computer loads. Voltage sags are short duration reductions in rms voltage. The main causes of voltage sags at faults, motor starting, and transformer energizing. Personal computers are another example of devices sensitive to voltage sags. A serious voltage sag at the terminals way lead mis-operation of the equipment. This paper presents an in depth analysis to evaluate the effect of harmonics reduction based on the IEC 61000-3-2 and the effect of voltage sag using ITI curve by applying a series resonant filter for personal computer loads.

Active Control of Thermoacoustic Instability in Cylindrical Combustor with Low Speed Flow Field (저속 유동장이 있는 원통형 연소기에서의 열-음향학적 불안정에 대한 능동 제어 연구)

  • 조상연;이용석;이수갑;배충식
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.914-921
    • /
    • 1998
  • Combusion instability due to thermoacoustic feedback in a ducted combustor usually excites severe noise and vibration, which could lead to result in the failure of the system or environmental dispute. In the present study, an active noise control(ANC) method with an adaptive algotithm is hired to suppress instability which has very discrete behavior in the frequency domain. Especially a feedback system is composed to evade hot environment of the combustor, and as a preliminary, the performance and stability of the controller is chekced by simulating the real situation with harmonic waves. Application to the real combustor showed serious reductions in sound pressure level by 20∼30 dB. It was also shown that the selected control system was very stable and effective.

  • PDF

Numerical analysis on the low noise designs of Savonius wind turbines by using phase difference in vortex shedding (와류이탈 위상차를 이용한 사보니우스형 풍력터빈의 소음 저감 설계에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.166-171
    • /
    • 2013
  • In this study, low noise designs of a Savonius wind turbines are numerically investigated. From a previous study, it was found that the high harmonic components whose fundamental frequency is higher than the BPF were found to be dominant in noise spectrum of a Savonius wind turbine. On a basis of this observation, S-shaped blade tip is proposed as a low design factors that decrease wind turbine noise by inducing phase differences in vortex shedding. The conventional Savonius and S-shaped turbines are investigated using Hybrid CAA method where flow field around the turbine are computed using CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow data. Noise reductions by these design factors are confirmed by comparing the predicted noise levels from these turbines.

  • PDF

The Active Noise Control in Harmonic Enclosed Sound Fields (I) Computer Simulation (조화가진된 밀폐계 음장에서의 능동소음제어 (I) 컴퓨터 시물레이션)

  • Oh, Jae-Eung;Lee, Tae-Yeon;Kim, Heung-Seob;Shin, Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1054-1065
    • /
    • 1993
  • A computer simulation is performed on the effectiveness of the active minimization of harmonically excited enclosed sound fields for producing global reduction in the amplitude of the pressure fluctuations. In this study for the appreciable reductions in total time averaged acoustic potential energy, $E_{pp}$, the transducer location strategies for three dimensional active noise control is presented based on a state space modal which approximates the closed acoustic field.In this study, the above theoretical basis is used to investigate the application of active control to sound fields of low modal density. By the used of room-like 3-dimensional rectangular enclosure it is demonstrated that the reductions in $E_{pp}$ can be achieved by using a single secondary source, provided that the source is placed within the half a wavelength from the primary source and placed away from nodal line of the sound field. Concerning the reductions in $E_{pp}$ by minimzing the pressure in sound fields by the use of 3-dimensional rectangular enclosure, the effects of the number of sensors and the locations of these sensors are investigated. When a few modes dominate the response it is found that if only a limited number of sensors are located away from nodal line and located at the pressure maxima of the sound field such as at each corner of a rectangular enclosure.

Performance Improvement of PMSM Current Control using Gain Attenuation and Phase Delay Compensated LPF (이득 감쇠 및 위상 지연 보상 LPF를 이용한 PMSM의 전류 제어 성능 개선)

  • Kim, Minju;Choi, Chinchul;Lee, Wootaik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • This paper applies a compensated low pass filter (LPF) to current measurements for permanent magnet synchronous motor (PMSM) drives. The noise limits the bandwidth of current controllers and has more adverse influences on control performances under the light load condition because of the low signal-to-noise ratio. In order to eliminate the noise sensitivity, this paper proposes a digital LPF with a compensator of gain attenuation and phase delay which are unacceptable in current information for PMSM drives. Characteristics of the proposed LPF are analyzed in comparison with the general LPFs. The compensated LPF is basically designed by the orthogonal property of the measured currents in the ${\alpha}{\beta}$ stationary reference frame. In addition, an implementation issue of the proposed method is discussed. Experimental results using the proposed method show improvements of the current control performance from two perspectives, rapid step responses and reductions of harmonic distortion.