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Three-Dimensional Effects on Added Masses of
Ship-Like Forms for Higher Harmonic Modes

by
Y.K. Chon*

Abstract

Sectional added masses of an elastic beam vibrating vertically on the free surface in higher
harmonic modes are evaluated. Hydrodynamic interactions between neighboring sections, which
strip theory ignors, are considered for modal wave lengths of the order of magnitude of cross-
sectional dimensions of the body. An approximate solution of modified Helmholtz equation which
becomes a singular perturbation problem at small wave lengths is secured to get an analytic
expression for added masses attending higher harmonic modes. As a bound of the present
theory, the modified Helmholtz equation is solved for the long flat plate vibrating at high
frequency on the water surface without any limitations on modal frequency. Finally, extensive
series of numerical calculations are carried out for ship-like forms. It is found that when modal
wave length is comparable to or shorter than a typical cross-sectional dimension of a body,
sectional interaction effects are large which result in considerable reductions in added masses.
For a fuller section, the ratio of added mass reduction is greater. In the limit of vanishing
sectional area, the added masses approach to that of flat plate of equal beam.

It iz shown that the added mass distribution for a Legendre modal form can be determined
from the present theory and that the results agree with the extensive three-dimensional deter-

mination of Vorus and Hilarides.

1. Introduction

In preliminary ship design, the hull is frequently
considered to be a simple free-free beam. The almost
universal method employed to evaluate hydrody-
namic added mass for use in vibration analysis is
F.M. Lewis's(1 classical procedure based on strip
theory. To correct the overestimated strip theory
added mass for three-dimensionality, he developed
approximate correction factors, called J-factors. This

procedure was developed almost simultaneously by

J.L. Taylor(2). L. Landweber and E.O. Macagno(3)
extended Lewis’s work for cross-sections of arbitrary
in horizontal
methods

shapes, vibrating in vertical and

directions. The above two-dimensional
(1,2,33

in

still can provide fairly reliable results

even the case of higher modal frequencies.
However, it has been generally recognized as being
of rigor inconsistent with that attemped in the

structural aspects of modern-day ship vibration ana-
lysis, which is particularly true in the case of such
as propeller-induced higher mode ~vibration and it

is difficult to guess with consistent accuracy in adv-
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ance. This is based on the fact that hydrodynamic
interaction between sections is negligible when the
cross-sectional dimension of the body is small com-
pared with modal wave length, while it is no
longer valid to consider sectional added masses to
be independent of neighboring sections in case of
higher modes vibration.

Three-dimensional analyses{4,5] were made by
E.O. Macagno and L. Landweber. However, they
are all limited for special type of body configurations
and motions. The most extensive three-dimensional
procedure was made by W.S. Vorus and S. Hylari-
des(6).

distributions of sectional added masses of a ship of

They successfully calculated longitudinal

arbitrary sectional shape by distributing Rankine
sources on the discretized quadrilaterals on the body
surface corresponding to the mode shapes represented
by normalized derivatives of Legendre functions.
W.C. Webster(7) has also used elaborate numerical
methods to calculate the pressure distribution on the
sections deforming in two- and in three-dimension.

In this study, a much less elaborate but none-the-
-less effective hydrodynamic theory and software
are developed to evaluate the secional added masses
of an elastic beam vibrating vertically in higher
harmonic modes. In fact, propeller induced exciting
forces are of typically 8- to 13-noded vibration(6].
Under these circumstances, the modal wave length
is of the order of magnitude of cross-sectional dim-
ension of the body, i.e., 28~0(1), where B denotes
a typical cross-sectional dimension of the body(most
usually the beam), while the strip theory rests on
the assumption that 2B~O(e). Therefore, throughout
this paper, 2B~O(1) is assumed and mode shapes
are considered to have sinusoidal variation. Nume-
rical calculations are made for the sections of ship-
like forms; circular section, elliptical sections and
Lewis form sections of various parameters such as
sectional area ratios, draft half-beam ratios and
miner-major axis ratios. It is found that the three-
dimensional effects are larger in fuller sections than
in finer sections, which results in generally greater
reduction ratios in added mass coefficients. Also, as

modal wave length decreases, sectional area ratio
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effect on the added masses becomes smaller so that

the added masses of the sections of equal beam-
draft ratio are found to approach to the same value
as that of flat plate of equal beam in an extreme
case. This is verified by solving the problem of
a long flat plate vibrating at high frequency on
the free surface without any limitations on modal
wave length, Effects of various parameters on the
sectional added masses are discussed.
Finally, longitudinal distributions of ratios of
three-dimensional to two-dimensional added masses,
forces of

so called J-factors and hydrodynamic

60 model (B/L=0.151), are

calculated for the eight-noded harmonic-vibration

Lewis-form Series

mode. Hydrodynamic force components corresponding
to the eight-noded vibration of Legendre function
mode shape, P, (2X/L), are extracted from the
forces of harmonic eight-noded vibration mode and
compared with Vorus's results(6]. The correlation
is excellant between the two methods. This assures
the usefulness of the present technique on the

analysis of higher modes vibration.
2. Formulation
Consider a floating beam vibrating vertically in a

fluid. The

motion of the fluid is assumed to be

deep, invicid, incompressible induced
irrotational
and hence a velocity potential exists. With coordinate
axes as shown in Fig. 1 and assuming the cross
sectional properties of the beam vary slowly longi-
tudinally, and if furthermore, the mode shapes can
sinusoidal

be approximately considered to have

modal wave

th
1e3$._——~J

/ Harmonic Z0de

P

hape

Fig. 1 Coordinate system
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Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes 21

variation, the velocity potential @(X,Y,Z;¢) and
body velocity V{(X;¢#) at the section may be taken
to be proportional to e*%+ i« without losing generality,

where % is modal wave number and last

term
denotes the harmonic time factor which will be
omitted hereafter. Then,
Q(Z, Y. Zit)=5( ¥, Z)ettzegivt
V(X 1) = Vieitea gint )
Using Eq. (1),

value problem can be reduced to a two-dimensional

our three-dimensional boundary

one. The three-dimensional Laplace equation is
converted to a modified Helmholtz equation in cross

flow variables, Y and Z. Corresponding equations

are
(F%,'7z—k3)¢:(), everywhere in the water (2)

09

a}l*:"::-ﬁm, on the body boundary 3
¢=0, on Z=0 (4
¢ and 22—40, as Z——oo )

and a radiation condition in the far field.

Note that, although Eq. (2) is written in two-
dimensional plane of cross-section of the beam,
three-dimensional effects are included in terms of
sectional potential ¢(Y, Z) and modal wave number,
k. Exact solution of Eq. (2) is limited to special
cases, however one may seek to exploit the condition
impozed by higher modes of vibration. It can be
seen at once that if # is sufficiently small, which is

2B~0(e),

are led

for the case of lower harmonic modes,
the term £*$ may be neglected, so that we
to the classical slender body or strip theory. However,
imposing the inverse condition, namely, the reciprocal
of the wave number is small compared with the
cross-sectional dimension, 2#8~0(1), by dividing Eq.
(2) through by &%,
soatd L P
Sy g )90 ©
Eq. (6) i3 seen to a singular perturbation problem,
since 1/E* multiplies the terms containing the highest
is ¢=0,
except in a narrow region (or mathematical boun-

dary laver)’8,97 whose width is of order of 1/

derivatives, in which the outer solution

about the section of the body.

kA B el o5 B 28 19884 6]

Then all the activity takes place within this layer
which serves as a transition zone to permit the
velocity potential to vary from its value on the
boundary to zero at its outer edge as described in
Figs. 2.1 and 2.2. The thickness of

layer is assumed to be very

this boundary
small in comparison
with the dimensions of the body as well as the local
the body so

consider that the

radius of curvature of any point on
that it becomes permissible to
shape and flow vary slowly in the local tangential
direction y, but rapidly in local normal direction z,
on the body section. This is an analogous argument
with the method of stretching coordinates in solving
the singular perturbation problem valid within the
mathematical boundary shown in

Figs. 2.1 and 2.2.

layer 78,9 as

Fig. 2.1 Boundary layer description

.
/f\
i
¢ =0 i :i;'rem;cn of
| - mdtien
boundary 3¢ ) ‘ /
layer =7 Velnd | -
gz ! 3
Y. 7 T g N’{ WTITT 4 v
go rody surface
=
1 Re

Fig. 2.2 Inner boundary value problem
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3. Solution

3.1. Inner Boundary Potential
With the foreging preparations, a corresponding
boundary value problem which is valid only inside
of the boundary layer can be posed in terms of local
coordinate system o-yz, with v axis taken in tan-
gential direction and z axis in normal direction at
the point about the section considered as described
in Figs. 2.1, 2.2,
system in Eq. {(2) from O-YZ to o-yz and use of

Transforming the coordinate

the relation between local radius of curvature and

Z =constan
surface

e

Fig. 3 Radius of curvature in transformed plane

scale factors in y and = axes [10) as shown in Fig.
3, the inner boundary-value problem corresponding

to Eqs. from (2) to (5) can be written as

%P 1 30 ge,
02° R, 5=z ky=0,

in the boundary layer )

—gizVo sind, on the body surface ®)
z

¢=0, outside the boundary layer @

where ¢ denotes the velocity potential within the
boundary layer, # is the angle between y axis and
direction of motion and local radius of curvature R,
at the point on the surface can be expressed as [10]
R.=(1+(dZ+dY)2 '3/ (d*Z/dY?)

in O-YZ system 10)
or
—_ 1 O,
R.= ks e n o-yz system
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where ki, by are the scale or metric lengths in »
and z directions respectively governing coordinate
transform from O-YZ to o-yz system. When R, is

infinitely large, namely, for flat surface, the contri-

bution of the normal velocity on the surface inside
of the boundary layer can be neglected, so that Eq.
(7) can be reduced to

3%/022—Kg=0, |R.|—>o0 an

Although Eq. (11) is not the real case, the results
of application of this equation on the circular section
is quite accurate as shown in Fig. 5. This assures
the validity of the assumption that when the thick-
ness of boundary layer is sufficiently small compared
with local radius of curvature, which means large
k, the potential within the boundary layer can be
regarded as a function of only the normal direction
on the surface of the section.

When R, is finite, the velocity potential inside of
the boundary layer at any point about the section is

Vo
ko

sind-e %%, |R.| finite (12)

Px)= —

where
ko=(1+ v1+(2kR.)?)/2R., R.Z0

while the solution of Eq. (11) with the same
boundary condition is,
Pe)=—TL singeete, |R|es a3

The linearized hydrodynamic pressure on the

surface about the section can be calculated from
unsteady Bernoulli equation. With the omission of

detailed procedure,

=0 Ziee Yo
P]z:n at ]zzn-zw(k‘ﬂsmﬁ

Therefore, the linearized hydrodynamic force in
the direction of motion per unit circumferential
length is

oF ]
s TP

Then, the expression of the force for total section

ck-ds :iwp-%&~ sin%0dS (14)
0

=0

at longitudinal position X far from the origin of

the coordinate is

F=§ 2L a5 etemia Ve {pj?_imi
et =i Ve M-e'®* (15)

where}‘ donotes the integration about the circum-
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Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes 23

ference below the waterline. Since iwV, is the
M can be

reted as a sec- tional added mass per unit

acceleration due to velocity Vo, interp-
accel-
eration. Corresponding expression to Eq.(13) can be

given as
M:,ofi“{—?-ds, |R,|—c0 (16)

On the other hand, the exact solution of Egs. (2)
to (5) is available for the circular section, i.e., by
the method of separation of variables in polar coor-
dinates, it can be seen that

_Vosing
kK, (kR)

where r and 9 denote the radial and

$(r.0)= - Ki(kr) an

tangential
directions in polar coordinates, K; and K,’, are the
modified Bessel functiton of the second kind and its
derivative with respect to argument respectively.
Then the hydrodynamic force and added mass can

be written as

. _KGR) oo L gih
F=—iwp Voj; ERGR) sin? 0 dS-e
M=_ PR Ki(kR)

(18)

2 RK/(RR)

Eq. (17) is valid for all k£ and therefore subsumes
strip theory. As k—0, Eq. (18) yields the well-known
two-dimensional result as can be deduced from the
When
the asymptotic

small argument behavior of K; and K

k approaches infinity, employing
expansion of Bessel function for large argument in

Eq. (18) yields
=4 . R 19

2.9, Added Masses of Lewis Forms and
Elliptical Sections
Applications are made of the present technique to
Lewis forme and elliptical sections. As in Ref.(13,
generation of Lewis form section can be done by
the transformation of unit circle in U(&, ) plane to
W(Y,Z) plane by following parametric equations.
U(g, 7)=&+iy (©11))
W(Y,2)=Y+iZ=U+A U+ AU
Then
Y=(1+A4,)cos a+ Azcos(3a)
Z=(1—A;)sin a— Ajco3(3a) 21

For given sectional area ratio ¢ and draft half-

KR e H25% 2% 19884 61

beam ratio I, parametric constants A; and A; can

be determined. On the other hand, the equation of

ellipses with semiminor and major axes being D
and B are given as
Z=—DV1—(Y/B)* (22)
with their area ratio o==/4 and draft hali-beam
length ratio H=D/B. With foregoing prepurations,
all factors in the integration in Eq.({1Z. can be

expressed in terms of parameters e, f,0 ana coord-

inate axes Y and Z.

4. Added Mass of a Long Flat Plate at
High Frequency on the Free Surface

As with the same argument from Eg.(2} tw Eq.
(5), let 0(X,Y,Z;6)=¢(Y, Z)e*s «eti,
boundary value problem can be written, a: cepicted
in Fig. 4,

foilowing

(Viy,z—kz)gi::O everywhere in the water (23)

%%-:Vo, for |Y|<B, all X (24)

¢=0 for | Y|=B, all X (25)

Also the radiation condition in the far fieid must

be satisfied.

4.1, Singular Integral Equation
Fundamental solution of Eq.(23) with the condition

for outgoing waves in the far fleld is,

G(Y, Z:7, 3)=Ko(kr)

=Kok (Y=t (Z- 0 (26)

~
Y Z=0:water W
/ -

rayr e
-~
~

Fig. 4 Vibration of a long flat plate on the water
surface
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where K, is the mcdified Bessel function of the second kind of order zero, G, can be interpreted as the
velocity potential at (Y,Z) due to a quasi source of unit strength located at (7, {). By differentiating Eq.(26)
with respect to dummy variable , a rotential of vertical dipole on the plate which has the property needed
in thig problem can be obtained as {11}

3G ] —RZ Kk (Y2
GiY. 20, O =— "¢ ]; Y& et R

It can be easily seen that the limiting values of this potential on and below the plate, when Z—=0,

27)

differ by the amount equal to the doublet strength. i.e.,
S(Y,07)—¢(Y,0%)=n(Y)
Therefore, distribution of this dipole of strength x(Y) along Y axis ({=0) leads to resulting total potential

k2 (P s Kk (Y —9)t-(Z— C)z)
8, Zy=—=2L [ D d (28)
Letting ¢o(Y,07)=x(Y)/2 and applying the boundary condition Eq.(24) yield,
0 _k (B $(p) Ki(klY—7])
2 § e D=V, (29)

This equation is seen to be a singular integral equation due to the behavior of the kernel in the integrand
at 7=71, Furthermore, the kernel in [Eq.(29) exhibits quadratic singular behavior at 7=Y due to the

behavior of K; at =Y, To isolate this singularity, addition and subtraction of the singular term in Eq.(29)

yields
_ k(B o) _yv._k(* 1 _ Kk Y—3D
= J-8 k(Y—p)? d=Vom j_ { HY—5)? Y= }¢0(T/)d77 (30)
Integrating Eq.(30) by parts and utilizing the condition given by Eq.(25) yields(12,13]
LR g Ay k(7 1 KGY—qD
{ o (Y=p Ty = Vo : J‘ {k(Y_U)Z Y7 }950(7])‘177 (31

Now the kernel on the right hand side of Eq.(31) is not singular at =Y, while Cauchy principal-value
integral appears in left hand side. Eq.(31) is of the form of a Fredholm integral equation of the second
kind. It is to be solved numerically; a successive approximation methcd is employed in the present
caleulation to get the solution. It is to be noted that the integral term on the right side of Eq.(31) repre-
sents the three-dimensional or “k-effect” on x(Y), hence in two-dimensional case, there is no contribution
from this integral term, whereas increasing contribution is indicated as % becomes larger.

4.2. Numerical Solution

To solve Eq.(31), care must be taken because of the kernel on the right side of Eq.(31). Although this
kernel is regular in the entire range of &, | Y[<B and [5|< B, the value of this kernel does not behave
uniformly since 2 Y—y| and |Y—3| vary independently which appear in the nominator and denominator of
the kernel. This non-uniformity produces a non-convergence of the solution when using the methed of
successive approximation. To overcome these numerical difficulties, non-dimensionalized quantities are

introduced as Y'=Y% 7 =xk in Eq.(31) and then it becomes

_k a¢<r’/k). dy ok KUY 7D 4 myge
J:~w } SErome j {(Y——r Ty PR G2

Now the second term in the integral of right hand side of Eq.(32) behaves uniformly with [Y'—3j,

while the integral limits are changed to -=£B.
The solation for Eq.(32) can be represented implicitly as, by the method of successive approximation{14],

‘kﬁ {‘hB a¢(:m'(77’/k) R dr}' :V“’”(Y’), V(O)(Y/):VO‘ (mZO, integer)
< J 1B a)y/ (YI_W/)

with
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e Y = Vi k KI([Y/“‘T D [EANNS R N
v = j_m{ (Y’ ok 1Y 7] } Gl
and

Sy = .’kB),:i rar’:—sin(ﬂﬁ) hmgj”"' =éo(Y,0)

Once the potential distribution on the plate is dertermined, it is straightforward to secure the added mass,

i.e., sectional hyvdrodynamic force can be written as

F=iwp (" si(Nd¥=ioVy- [ «j Sy (33)

-

5. Longitudinal Distribution of Sectional Added Masses and Hydrodynamic Forces

Applications of the present technigue are made to obtain a longitudinal distribution of o called J-factors
and hydrodsnamic forces for $-noded harmonic vibration. In Ref.767, a Series~60 hull form was used by
Vorus et. al., in their analyses, in which the sections were replaced by Lewis form of equal draft-half
beam and area ratio and fore-aft symmetry was imposed to save computer time. J-factors and hydrodynamic

forces are caleul

ated for the same hull and the spheroid of equal B/L in the present analyses.

Introduzinz a dimensionless coordinate X such that X=2X/L and wave number %, as k=EL/2, where
X is the longitudinal coordinate with its origin at the midship as dipicted in Fig. 1, and L is the total
length of the hull,
then

| ¥1= 9X/L' <1, for 1X|=(L/2), kX=kX (31

1

Therefore, the modal function of harmonic vibration with even numbers of node can be written as

H(Y =coshX = coskm'{);wﬁ - X (35)

with m defined as odd integer (m=1), so that m=1 denotes heave mode vibration. m=3 denotes 2 node
vibration. And from Eq.(34),

P8 =T im—DE= (”I“ X=kX, kB= (5)(7}271)3 (36)

= 1

5. 1. J-Factors
Lewis™1  first defined J-factors as the ratio of the fiuid kinetic energy due to the spheroid vibrating with
specified one dimensional mode shape to the fluid kinetic energy of the same spheroid by strip theory.
These are cailed spheroid J-factors by Vorus et. al.76) and they calculated Series 60 J-factors as the ratio
of three— 10 two-dimensional sectional added masses. Their mode shapes are assumed to be the normalized
derivative: of Legendre functions which is defined as in 715 .
P30 vmim—1)  mzl (37
where m being same definition as above. In fact, the coeflicient in Eq.(37) arises from the normalization
process 15 . In the present analysis, harmonic modal functions in terms of cosine function are used. Then

J-factors corresponding to this mode shape can be calculated as in the same way in Ref. 6.

JHCT = MU Map( ) (3%)

where M} ¥) and M,p(X) denote zectional added mass for higher harmonic mode with (m—1) nodes
and strip-theory added mass respectively. In Eq. (38), two-dimensional added mass data are taken from
the results of Landweber’s73.

As seen in Tig. 10.1, the spheroid J-factors are constant for all X scince the cross sections are circles.

Kot 5% 2% 19884 6]
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Series 60 J-factors are found larger than those of the speroid in harmonic mode, while, as can be seen in
Ref.(6], they oscillate about and are generally larger than those of the spheroid in Legendre mode shape.
5.2. Hydrodynamic Forces
Hydrodynamic force distribution is calculated to relieve the concern over the large differences in J-factors
between Series 60 and the spheroid. Nondimensionalized hydrodynamic force for harmonic mode shape

with (m—1) nodes can be written as, following the dimensionless quantity in Ref.(6_

H(¥ ¥ o — -~ He 57 Ty \2 -
—%: ]Vizg(if) « JE(X)+cos ,(,’_’_"_2‘,_12,,,,)(: }MJ"—(LZ - 7; <£é£)> . COS—%» (m—1)zX (39>
. m 4 m 7‘OBZ(X) & m &

where FE(X), J#(X) are hydrodynamic force and J-factor at position X for harmonic mode shape with
(m—1) nodes, B(X), B, denote sectional and maximum half beam respectively, and % denotes the ampli-
tude of vertical motion. Through the orthogonal analysis of harmonic modal function cos/(m—1)7%/2]
using normalized Legendre functions, it can be easily seen that the harmonic mode shape with specified
node numbers is actually the combination of infinitely many Legendre mode shapes with every number of

nodes as shown in Eq. (40).

by { —-l—~—jl Pm(X)cosM}?dX'} < P(X), m; odd integer 40
m=l \ m(m-+1) J -1 2
Thus from Eq. (39), hydrodynamic forces for the (m—1)-noded Legendre mode shape can be written as

FO . MIK) | x (B VL1 [ pR) . coe MDE gL px
co’BfL Tz B X) 7( B. > {m(m-H) S—lP”'(X) cos— X} Pu(X) (1)
Pis

while corresponding expression in Ref.76] reads
Fy(X) _ _ Ma(X) L( B(X) >2.pm(5() (42)
2

P I ; -
cw’ Byt p'%BZ(X)

m

where ML (X) is the sectional added mass for Legendre mode shape with (m—1) nodes. Equating Egs.
(41) and (42) yields

ML) =M (R) - {7(_”1:?5”_1 Po(Dycos 2D ga%) (43)
In Fig. 10.2, the results of Eqs. (39),(41) are
shown when m=9 together with Vorus’s results Eq. 6. Numerical Calculation and Conclusion
(42) from Ref.[6). As expected, hydrodynamic
forces near the stern are vanishingly small so that Modified Helmholtz equation which becomes sin-
the differences in J-factors in the stern portion of gular perturbation problem at small wave length is
the hull seem to be inconsequent. Hydrodynamic solved approximately to evaluate the sectional added
forces for the harmonic mode shape are found to masses and to investizate three-dimensional effects
be larger than for the Legendre mode shape. And on these added masses for an elastic beam of ship-
the correlations between the results of Eq. (41) like sections vibrating vertically in higher harmonic
and Eq. (42) are found to be excellant. This supports  modes, It is also solved exactly for the circular
the usefulness of the present technique demonstra- section and a flat plate without any limitations on
ting that it gives good results even at the extre- modal wave number, %, as given by Egs. (18), (33)
mities of ship forms. Also as seen in Eq. (43), and shown in Fig. 5. It is found that correlation
added mass of the sections corresponding to (m—1) between the values from present theory and the
noded Legendre mode can be evaluated from that exact solution is good for entire range of % in case
of the harmonic mode shape of same nodes. of circular section. When kB=zx, the difference

Journal of SNAK, Vol. 25, No. 2, June 1988
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between the results by present method and the
exact solution is only 2%. However, present theory
fails to provide reliable results when kB is small,
as this violates our basic tanet.

With the confirmations provided by those exact
aolutions, extensive numerical calculations are carried

out for the sections of Lewis form and ellipses as
shown in Figs. from 5 to 10 using the procedure

developed herein. Analyses of these results and a

d Masses of Ship-Like Forms for Higher Harmonic Modes
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comparison with three-dimensional results by Vorus
et al.[6) confirm that this technique and the results
herein can be used practically for vibration analyses
in higher modes, while they are not reliable when
the modal wave length is larger than the order of
magnitude of the typical crosssectional dimension.
For any given sectional configurations, those can
be transformed to Lewis form sections of equal

sectional properties and hydrodynamic added mass

. -
.S¢TB
PEREY S i 1 c{'o (1t ’
3.0 Exact numerical sol. i_-__ gi;iup?;tie E;.?éS%q (18
Present method .  Lewis form sections, Eq. (15])
2.08
g =0.5
=0.6 H=1.0
=0.7
1.0 =0).7854(circle) )
A
lA"‘*lx,.‘A” _______________
x 1 e R e -
T I G ca— N
t
oo 2.09 1.05 0.70 0.52 0.42 Am/2B
Fig. 5 M’ for flat plate, circular and Lewis form sections
5¢18 1
& =0.7854 Q 7
it y

0{0 1.5 3.0 4.5 6.0 7.5 \kB
1 i 1 ! 1
© 2.09 1.05 0.70 0.52 0.42 Am/2B
Fig. 6 M for elliptical sections, H=0,8—2.5
KEEREEEE wond: H2H 19884 67
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.5pnB?

L L
0.44 0.37 )“'/ZB

Fig. 7 M’ of Lewis form sections, H=0. 8, 0=0. 45—0. 90

matrix under any higher modal form in the vibration
analysis can be evaluated using present technique.

From the foregoing discussions, following conelus

ions are drawn about the higher modes added
masses;
1) In Fig. 7, for Lewis form sections of equal

draft half-beam ratio, H, sectional added masses
decrease monotonically as modal wave number &
increase. This tendency is weaker as area ratio, o

increases and H increases. Also, for equal H section,

—t
JETE

06—

T = C.45

&% 5.58 .76 1.4 1.72 o,
Fig. 8 M"” of Lewis forms sections, ¢=0. 45,
kB=3.0~9.0

added masses of finer Lewis form sections are
larger than those of fuller sections at higher modes
and the differences between them become smaller
for increasing k. Therefore the influence of ¢ on
the added masses becomes smaller and finally it
can be expected that the added masses of sections
of finite area ratio approach to that of the flat plate
of equal beam length as k=(2x/2,)—0cc, which is

shown in Fig. 5.

SR g g b

]
|
¢

Q.9

Q.45 0.% C.63 0.7z [V-34
Fig. 9 M’ of Lewis form sections, 38=9, (,
H=0.6~2.0
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Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes . 29

2) For equal area or constant s-sections, as shown
in Fig. 6 for elliptical section and Fig. 8 for Lewis
form, their added masses at higher modes decrease
with increasing %2 and H, This tendency is strong,
when H is small and £ is large.

3) For specific £ value in higher modes as shown
in Fig. 9, added mass decreases with ¢ until o=
0.75~0.8 and then increases with ¢ larger than
about 0. 75~0.8.

The {following conclusions can also be drawn
about the three-dimensional effects on added masses.
It follows that,

4) The results in the above conclusion (1) implies

that the three-demensional effect along with ine-

reasing % is larger in fuller sections than for finer
sections, which yields larger amount of reductions
in added masrses of fuller sections than those of
finer sections.

5) The rate of increase of this three-dimension-
ality as a function of increasing ¢ reduces as k and
H increases.

6) With the same argument as above, three-di-
mengional effects are stronger in larger H section for
constant ¢ and %, and this tendency decreases with
increasing ¢ and k.

Finally, the longitudinal distributions of J-factors
and hydrodynamic force distributions are calculated

for harmonic mode shape. It is found that,
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Fig. 10.1 Longitudinal distribution of J-factors of series 60 and the spheroid for eight-noded

harmonic vibration
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7) J-factors of Series 60 are larger than those of
the spheroid of equal B/L ratio for higher harmonic
mode as shown in Fig. 10,1,

8) Hydrodynamic forces and added masses for
higher Legendre-function type modes can be cal-
culated from the results of harmonic mode shapes
with equal nodal points through orthogonal analyses.
Application of this technique shows good correlation

as shown in Fig. 10.2.
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