• 제목/요약/키워드: reduced beam section

검색결과 120건 처리시간 0.026초

Clarifying Warhead Separation from the Reentry Vehicle Using a Novel Tracking Algorithm

  • Liu Cheng-Yu;Sung Yu-Ming
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.529-538
    • /
    • 2006
  • Separating a reentry vehicle into warhead and body is a conventional and efficient means of producing a huge decoy and increasing the kinetic energy of the warhead. This procedure causes the radar to track the body, whose radar cross section is larger, and ignore the warhead, which is the most important part of the reentry vehicle. However, the procedure is difficult to perform using standard tracking criteria. This study presents a novel tracking algorithm by integrating input estimation and modified probabilistic data association filter to solve this difficulty in a clear environment. The proposed algorithm with a new defined association probability in this filter provides a good tracking capability for the warhead ignoring the radar cross section. The simulation results indicate that the errors between the estimated and the warhead trajectories are reduced to a small interval in a short time. Therefore, the radar can produce a beam to illuminate to the right area and keep tracking the warhead all the way. In conclusion, this algorithm is worthy of further study and application.

지하 프리캐스트 박스 암거의 구조적 성능 개선에 관한 연구 (Improvement of Structural Performance for the Precast Box Culvert)

  • 조병완;태기호;이계삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.393-398
    • /
    • 2000
  • To use concrete box culverts effectively, precast goods are manufactured at a factory, then linked and anchored with prestressing tendon at a field. However, the corrosion of rebar and prestressing tendon in the box culverts utilizing portland cement concrete is issued when the cracks occur at a underground water level. It has been reported that reported that expansive concrete, compared with portland cement concrete, has many structural advantages such as increasing capacity of watertight, controling initial crack and improving durability due to its property of expansion. During flexure test with RC beam made from expansive concrete, in the case of a constant section of concrete element, the lower steel ratio is, and in the case of a constant steel ratio, the more incremental the section of concrete element, the more incremental the amount of chemical prestress by expansive concrete is. At the segment of the box culverts using expansive concrete, the numbers of crack and its gap is reduced, and ultimate load and initial crack load is much larger than the segment at which expansive concrete is nor used. Also lay-out of tendon with a curvature generate upward force so that deflection is reduced. Through the whole procedure, it could be confirmed that performance precast box culvert by means of using expansive concrete is improved.

  • PDF

보강재로 보강된 개방 원뿔형 쉘의 해석 (Analysis of Open Conical Shells with Stiffeners)

  • 박원태;최재진;손병직
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2004
  • In this study, open conical shells with ring and stringers are analyzed A versatile 4-node shell element which is useful for the analysis of conical shell structures is used and 3-D beam element is used for stiffeners. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. The proposed element has six degrees of freedom per node and permits an easy connection to other types(beam element) of finite elements. Optimum location and optimum section properties of ring and stinger are obtained. It is shown thai the thickness of conical shell can be reduced about $20\~50\%$ by appropriate location of stiffeners.

하중감소효과를 고려한 원자력 주증기 배관의 균열 안정성 평가 (Crack Stability Evaluation of Nuclear Main Stream Pipe Considering Load Reduction Effect)

  • 고봉환;김영진;석창성
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1843-1853
    • /
    • 1996
  • The objective of this paper is to evaluate the crack stability of the nuclear main stresm pipes, considering the load reduction effect due to the presence of circumferential throuth-wall crack. Also, the optimization techniques are adoped tosimulate the crack effect on the elbow component of the piuping system. By using a general beam elemetn which contains a discontinuous cross-section, the piping analysis is accomplished to acquire the reduced load. Considering this reduced load, it is feasible for the LBB application in nuclear main stresm pipe. Also, by combining an optimization program and a genaral finite element analysis program, the appropriate dimensions of the simplified beam elemtn which represents the effect of crack in elbow could be successfully determined.

Experimental study on seismic behavior of exterior composite beam-to-column joints with large size stiffened angles

  • Wang, Peng;Wang, Zhan;Pan, Jianrong;Li, Bin;Wang, Bo
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.15-26
    • /
    • 2020
  • The top-and-seat angles with double web angles are commonly used in the design of beam-to-column joints in Asian and North American countries. The seismic behavior analysis of these joints with large cross-section size of beam and column (often connected by four or more bolts) is a challenge due to the effects from the relatively larger size of stiffened angles and the composite action from the adjacent concrete slab. This paper presents an experimental investigation on the seismic performance of exterior composite beam-to-column joints with stiffened angles under cyclic loading. Four full-scale composite joints with different configuration (only one specimen contain top angle in concrete slab) were designed and tested. The joint specimens were designed by considering the effects of top angles, longitudinal reinforcement bars and arrangement of bolts. The behavior of the joints was carefully investigated, in terms of the failure modes, slippage, backbone curves, strength degradation, and energy dissipation abilities. It was found that the slippage between top-and-seat angles and beam flange, web angle and beam web led to a notable pinching effect, in addition, the ability of the energy dissipation was significantly reduced. The effect of anchored beams on the behavior of the joints was limited due to premature failure in concrete, the concrete slab that closes to the column flange and upper flange of beam plays an significant role when the joint subjected to the sagging moment. It is demonstrated that the ductility of the joints was significantly improved by the staggered bolts and welded longitudinal reinforcement bars.

선박(船舶)의 적화상태(積貨狀態)가 선체진동(船體振動) 특성(特性)에 미치는 영향 (The Effect of Loading Conditions on Ship Vibration Characteristics)

  • 김극천;곽문규;김형만
    • 대한조선학회지
    • /
    • 제20권1호
    • /
    • pp.29-33
    • /
    • 1983
  • The loading condition, of a ship, especially a multi-purpose cargo carrier, in service, is often changed. Then, the prediction of natural frequency changes is necessary to provide measures for prevention of ship vibrations. In this paper a simplified method for the above purpose is presented. The bases of the method are analytical solutions for the lateral vibrations of uniform Timoshenko beams carrying a concentrated mass and the Dunkerley's formula. In this method a ship in the standard ballast condition is reduced to a uniform Timoshenko beam having same system parameters as those of the midship section. To investigate the validity of the proposed method, numerical calculations are carried out for a 46,000 DWT bulk carrier and compared with detailed calculations based on the finite difference method. Even in cases those the cargoes in a hold, length of which is about 13% of the ship's length, are reduced to a concentrated mass, the proposed method gives results of several percent differences from the detailed calculations up to the six-noded mode.

  • PDF

IPC 거더의 연속화 설계 방안 (Design Method for Continuous IPC Girder bridges)

  • 한만엽;황의승;박준범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1007-1012
    • /
    • 2000
  • This study is to present a design method using continuous tendons in IPC girders. Present design methods use just concrete to make continuity between girders. In these design methods cracks occur in almost every joint area of girders. This means that these girders act as simple beam instead of continuous beams. The design method which is presented here uses continuous tendons between girders. In this method the cracks could be restrained. So the girders behave as continuous beams, which this method allows the span length gets longer than simple girders and also the section height could get lower. In this way the number of piers and the weight of super structure could be reduced which means the construction cost could also be reduced.

Influence of pinching effect of exterior joints on the seismic behavior of RC frames

  • Favvata, Maria J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.89-110
    • /
    • 2014
  • Nonlinear dynamic analyses are carried out to investigate the influence of the pinching hysteretic response of the exterior RC beam-column joints on the seismic behavior of multistory RC frame structures. The effect of the pinching on the local and global mechanisms of an 8-storey bare frame and an 8-storey pilotis type frame structure is evaluated. Further, an experimental data bank extracted from literature is used to acquire experimental experience of the range of the real levels that have to be considered for the pinching effect on the hysteretic response of the joints. Thus, three different cases for the hysteretic response of the joints are considered: (a) joints with strength and stiffness degradation characteristics but without pinching effect, (b) joints with strength degradation, stiffness degradation and low pinching effect and (c) joints with strength degradation, stiffness degradation and high pinching effect. For the simulation of the beam-column joints a special-purpose rotational spring element that incorporates the examined hysteretic options developed by the authors and implemented in a well-known nonlinear dynamic analysis program is employed for the analysis of the structural systems. The results of this study indicate that the effect of pinching on the local and global responses of the examined cases is not really significant at early stages of the seismic loading and especially in the cases when strength degradation in the core of exterior joint has occurred. Nevertheless in the cases when strength degradation does not occur in the joints the pinching may increase the demands for ductility and become critical for the columns at the base floor of the frame structures. Finally, as it was expected the ability for energy absorption was reduced due to pinching effect.

전기화학적 염화물 추출 후 철근-콘크리트 보의 휨 거동 (Flexural Behavior of RC Beam After Completion of Electrochemical Chloride Extraction)

  • 이정욱;안기용
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.484-492
    • /
    • 2023
  • 본 연구에서는 전기화학적 염화물 추출(ECE) 완료된 RC 보의 구조적 거동을 기존에 주로 사용되었던 부착 강도 측정이 아닌 3점 재하 시험을 통해 분석했다. 그 결과, ECE 처리에 의해 콘크리트 보의 휨 강성은 저하되었으나, 최대하중 측면에서 강도는 향상되는 것으로 나타났다. 또한, ECE에 의해 인장 변형률이 증가하여 인장 균열에 대한 저항성은 향상되었으며, 관성 모멘트 감소율은 감소하였다. 이러한 구조적 거동 측면의 이점에도 불구하고 연성 및 휨 강성은 저하되었다. 콘크리트보의 휨 강성은 선형 탄성 범위에서 유효 단면적의 손실로 인해 감소됐고, 실제로 인장변형에 의해 파손된 상태에서 단면 2차 모멘트는 약 70 %의 손실되었다. 그러나 이러한 단면 손실에 의한 관성 모멘트 감소율은 ECE에 의해 더 낮아졌는데, 이는 균열에 대한 저항성이 증가되는 반면, 변형량이 증가되어 사용성 측면에서의 위험성은 더 증가됨을 의미한다.

바닥슬래브를 고려한 용접철골모멘트접합부의 내진보강 (Seismic Retrofit of Welded Steel Moment Connections Considering the Presence of Composite Floor Slabs)

  • 이철호;김성용
    • 한국강구조학회 논문집
    • /
    • 제29권1호
    • /
    • pp.25-36
    • /
    • 2017
  • 1994년 노스리지 지진 당시 발생한 용접모멘트 접합부의 취성파괴는 주로 보 하부 플랜지에서 발생하였다. 특히 국내 기존 용접철골모멘트 접합부의 경우 과다한 전단스터드 배치에 따른 의도치 않은 합성작용로 인해 지진 내습 시 보 하부 플랜지의 취성파단이 더욱 우려되는 실정이다. 본 논문에서는 합성효과로 인한 접합부 성능저하를 개선하기 위한 목적으로 중량전단탭/수평헌치/삼각헌치로 보강된 접합부 및 RBS가 도입된 접합부에 대한 실험을 실시하였다. 통상 기존 접합부 상부 플랜지의 수정이 불가하다는 점을 고려하여, 본 연구에서는 보 하부 플랜지에만 수평/삼각헌치를 보강하거나 RBS를 도입하여 이 때의 내진성능을 평가하였다. 실물대 실험 결과 수평/삼각헌치 혹은 중량전단탭으로 보강한 실험체는 모두 합성작용으로 인한 부작용을 극복하고 특수모멘트접합부가 요구하는 수준 이상의 소성회전각 5%이상을 발현함을 확인하였다. 또한 SRC 기둥에 RBS를 도입할 경우 접합부에 소요되는 변형의 대부분을 RBS측에서 일어나도록 유도함으로써 SRC기둥에 발생하는 손상을 방지하는 효과가 있음을 규명하였다. 이 중 중량전단탭 보강에 따른 접합부의 거동을 분석하기 위하여 추가의 수치해석 연구를 실시하였으며, 제시한 각각의 보강안에 대한 권장상세를 제시하였다.