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Clarifying Warhead Separation from the Reentry Vehicle Using
a Novel Tracking Algorithm

Cheng-Yu Liu and Yu-Ming Sung

Abstraet: Separating a reentry vehicle into warhead and body is a conventional and efficient
means of producing a huge decoy and increasing the kinetic energy of the warhead. This
procedure causes the radar to track the body, whose radar cross section is larger, and ignore the
warhead, which is the most important part of the reentry vehicle. However, the procedure is
difficult to perform using standard tracking criteria. This study presents a novel tracking
algorithm by integrating input estimation and modified probabilistic data association filter to
solve this difficulty in a clear environment. The proposed algorithm with a new defined
association probability in this filter provides a good tracking capability for the warhead ignoring
the radar cross section. The simulation results indicate that the errors between the estimated and
the warhead trajectories are reduced to a small interval in a short time. Therefore, the radar can
produce a beam to illuminate to the right area and keep tracking the warhead all the way. In
conclusion, this algorithm is worthy of further study and application.
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algorithm, trajectory estimation.

1. INTRODUCTION

Separation of the reentry vehicle (RV) into the
warhead and the body is a simple and common way to
confuse radar and increase a warhead’s damage
capacity by producing two sets of measurements from
a radar beam. The radar estimates and predicts the
target’s trajectory at the next sampling period from the
measurement with the higher signal to noise ratio and
forms a beam to illuminate it. The body is then
tracked and intercepted first, since its radar cross
section is inevitably larger than that of the warhead.
The warhead, which is the most significant part of the
reentry vehicle, becomes a new track or is completely
ignored all the way. This problem is difficult to solve
unless the standard tracking criteria is modified.

If a warhead does not alter its trajectory during
separation, then it typically follows closely the
original trajectory with slightly higher speed and
lower drag force. However, for the body, the cylinder
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configuration causes its speed to drop rapidly to zero.
Then, the innovation with respect to the warhead,
given by the difference between the estimated and
warhead trajectories, is smaller than that with respect
to the body. This value is an important hint for
designing an useful algorithm. Hence, the tracking
problem concerns quickly generating a reliable
innovation to determine which set of measurements
originates from the RV in the track. A reliable
innovation is calculated by an on-line precise
trajectory estimation approach. The origination of the
set of measurement is based on data association
technique.

The on-line estimation of the trajectory of an RV is
very important for radar tracking. The main problems
related to trajectory estimation relate 'to model
validation, due to model error between the
mathematical model and physical system. The model
error is normally the result of the simplifying
assumptions, maneuvering and unpredictable external
forces during flight, parameter uncertainty, and other
sources. The extended Kalman filter (EKF) is a well-
known and helpful state estimation scheme for a
nonlinear dynamic system, but fails to reach the
reqired accuracy in a short time. Input estimation (IE)
provides a good solution to this problem. IE has been
successfully employed to estimate inputs for solving
tracking [1-4] and inverse heat conduction problems
[5-7]. Lee and Liu presented a filter associating EKF
with IE to handle model validation problems and
provided an accurate trajectory estimation approach
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for the RV [8]. Their proposed filter has lower
innovation and estimation errors than the original
EKF, and hence can be applied to this problem.

Bar-Shalom and Tse designed a suboptimal
Bayesian algorithm, probabilistic data assocition filter
(PDAF) [9], for tracking a single target in a cluttered
environment, which addresses all radar returns
including clutters. The predicted and updated states
for all returns weighted by a posteriori probability,
known as association probability, formed the
combined states of the target. The association
probability indicates the probability of each return
originating from the object in track. The PDAF was
successfully ultilized in sonar and radar systems to
increase their tracking capacity [10,11] and in other
fields [12-15]. Recalling the problem faced herein, IE
and PDAF can provide an accurate innovation and
idea for obtaining the combined state from these two
sets of measurement. However, the clutter seldom
appears in high elevation angle region where is the
main search area for detecting the RV. For simplicity,
it is properly to develop a method, namely modified
probabilistic data association filter (MPDAF), to
detect the RV ignoring the clutter.

This study defines the MPDAF and links with the
EKF and IE to form an algorithm to estimate and
predict the warhead trajectory from two sets of
measurements. Section 2 presents a problem statement
given in to elucidate the problem and to formulate
dynamic equations for the RV, warhead, and body.
Section 3 outlines the IE algorithm. Section 4 presents
the MPDAF in a clear environment with the redefined
association probability for each measurement set, and
the flow chart of the proposed filter. Section 5
presents the simulation analysis of the proposed
algorithm in different cases, which demonstrate that
the proposed approach perform well, and presents its
future applications.

2. DYNAMIC EQUATIONS

Consider a vehicle in the reentry phase over a flat
and nonrotating earth as illustrated in Fig. 1. Assume
the RV to be a point mass with constant weight
following a ballistic trajectory in which two
significant forces, drag and gravity, act on the RV.
Extra forces are induced by model error when
assumptions are violated or the RV undertakes a
maneuver. The RV trajectory model in radar
coordinate (O, Xp, Yz, Zg) centered at the radar

site can be written as
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Fig. 1. Reentry vehicle flight geometry.

2
\'}zz'g—é—gsin}/l—g+u6, 3)

with position initial conditions x(0), »(0), z(0) and
velocity initial conditions v (0), v,(0), and v, (0) in
Xp, Yy and Zg, respectively. In this model, C
denotes the ballistic coefficient,
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v means the total velocity of the RV, v,, Vy, and v:
express velocity components along X, Yz, and Zg,
respectively; u,, us, and y, areunmodeled accelera-

tions generated by the model errors along each axis;
Cpo, S and W denote zero-lift drag coefficient,
reference area and, weight respectively. p stands for
air density and is a function of altitude [16]. The well
known normal gravity g model is extensively used
because the RV normally flies over heights of several
hundred kilometers [17].

The RV separates into two objects, the warhead and
the body, at a given altitude or a certain time. The
warhead moves toward to a spot near the RV’s
destination, along a slight different trajectory from
that of the original RV. The body then falls on its own
rapidly after several seconds. The difference among
the equations of motion for the RV, warhead, and
body is only in the ballistic coefficient. Equations of
motion for the warhead with the ballistic coefficient

C,, after separation can be expressed as
2
. V. .
Vix =~ gcw LCOSY 1 SMY iy + Uy, r> L, (4)

w
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with position initial conditions x,,(¢,), ¥,,(%), 2, (%)
and velocity initial conditions v, (¢;), v, (%), and
Vo (ts) in Xp, Yp, and Zp, respectively, where
t, means the time to separate, v,, denotes the total
velocity of the warhead, 7, and y,, express the
elevation and flight path angles, respectively; u,,,,

u,s, and u, are unpredictable input accelerations

acting on the warhead. For the body with the ballistic
coefficient Cy,

2

Vix =—';‘g)b goosyy sinyyy +uupy, t>1g,  (7)
. PVbZ
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with position initial conditions x; (), v, (%), z,(Z,),
and velocity initial conditions vy, (¢,), v, (), and

vy (t;) in Xp, Yp, and Zp, respectively. The

parameters and variables are defined as in the warhead.

Let the state vectors be

T
X(t)=[x1 Xy X3 X4 X5 x6:|
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The nonlinear state equations can be written as
X0 =F(X)+ou+lIgl, t<t, (13)
X, =F(X,)+ou, +Igl,, t>t, (14)
Xb(t):F(Xb)+¢”b +16><6§b’ t>ts, (15)

where ¢, ¢, and ¢, stand for the process noise

vectors with variance Q, @,,, and @,, respectively,
I denotes the identity matrix,
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The precision phased array radar, which is a digital
radar, is used in tracking and is the only instrument in
the system for detecting the RV. It predicts target’s
position at the next sampling period according to a set
of measurement, and generates a radar beam to
illuminate the predicted area to track the target. The
measurement equation for the RV is then given by

Z=HX+¢s, <1, (16)

where ¢ denotes the measurement noise vector, which
is assumed to be normally distributed with mean zero
and variance R, and H is the 6x6 identity matrix. (13)
and (16) are the dynamic equations for the RV during
reentry. When ¢ > t., two sets of measurement are
detected at the sampling time, one for the warhead and
one for the body, that is

Z,=HX, +¢,
Zb :HXb +¢&,

>t a7n
t>t,. (18)

(14), (17), (15), and (18) are the dynamic equations
for the warhead and body, respectively, after
separation. The radar is trying to estimate and predicte
state vectors from these two sets of measurement.

3. EXTENDED KALMAN FILTER WITH
INPUT ESTIMATION

Input estimation means the method that estimating
unknown inputs in state equations from pseudo
innovations, which are the difference between the
estimated states by the EKF with no input and

measurements. At 7<t¢,, the predicted and updated
states vectors of the RV by the EKF from 7=nAf to
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t=(nt1)At, n=0,1,2,..., under input vector u(n) at
t=nAt are given by, respectively, [18]
X (n+1]n) = ¢(n) X (n|n) + ppu(n), (19)
X (n+1ln+1)=X(n+1n)
+K(n+D[Z(n+D)- HX(n+1|n)], (20)

where ¢, =@At, At is the sampling period, Z(n+1)
denotes radar measurements at t=(n+1)Af, and the
transition matrix

p(n) = T + 22K A,

Z X=X (nn)
K(n+1) isthe Kalman gain.
Let X(n+ 1|n +1) denote the updated states for
the EKF with no input at /=(n+1)Az. For simplicity, let

X (n+D)=X(n+1|n+1),
X(n+1)=X(n+1|n+1),

and define

M(n+1)=[I - K(n+1)H]¢(n),
N(n+1)=[I-K(n+1)H]p,.

Assume that the abrupt deterministic inputs are
applied during kA? <t <(k+ 5)At,

t<kAt,t>(k+s)At k,s>0

(21
kAt<i<(k+s)At 1=0,1,2,..,s,

{ 0
u=
uk+1)

where u(k +1) is a constant vector over the sampling

interval. Then, X(k)=X(k) during ¢<kAs. The
difference induced by the abrupt inputs between these
two formations during kAr<r< (k +s)At can then

be written as

AX(k+1)=X(k+1)— X (k+1)

= M(k+DAX (k+1-1)+ N(k + Du(k +1-1).

Define the measurement residual for the EKF
formation without and with inputs to be, respectively,

Z(k+)=Z(k+1)- HX(k+1),
Z (k+D)=Z(k+1)- HX(k +1).

The recursive least-squares input estimator can be
derived as [8]

i (k+1-1)=dak+1-2)
+G(k + DY (k +1) - Ok + Dk +1 - 2)], (22)

where
Y (k+0)=Z(k+1)— HM(k+AX (k +1-1),
Ok +1)= HN(k +1),
AX (k+1-1)= Mk +DAX(k+1-2)
+N(k+Dalk +1-2).

The gain G(i) and variance of u(i), V(i), are

Gl+D)=V(k+1-1)®k + g™,

Vk+1-1)=V(k+1-2)-V(k+]- 2Dk +1)T
(D +IW (k +1-2)Dk +1)T +E]!
x®k + DV (k+1-2),

where g means the variance matrix of Z(k +/) and
can be easily derived as

E=R+HP(k+1+1k+DH',

and P(k+[+1|k+1) expresses the covariance matrix

of the predicted states for the EKF with no input.

In (21), k and s respectively denote the starting and
stopping indices of the system input, which can be
determined by testing. The test for detection of input
is expressed as

u(i)
NIZ)

otherwise (i) is absent where J(j,i) is the ii-th

>t,, existence of y(i) fori=4,5,6,(23)

element of ¥ and [z, ¢,

interval which can be obtained from the cumulative
normal distribution table for a certain preset
confidence coefficient 1-c.

Once the input is estimated, the EKF is corrected
with the estimated input at the same time. By
incorporating the on-line input estimator into the EKF,
the predicted and updated states at time interval

kAt <t <(k+s)Ar are given by

] represents the confidence

XV (k+llk+1-1)=g(k+1-DX"(k+1 1|k +1-1)

+opa(k +1-1), (24)
XV (k+l|k+l):f(”(k+l|k+l—1)+Kv(k+l)[Z(k+l)
—HX" (k +1|k+1-1)]. (25)

The Kalman gain becomes
K'(k+0)=P"(k+l|k+1-DH"
(26)
[HP"(k+1|k+1-DHT + R,

with the covariance matrices at AAf << (k +5)Af
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Fig. 2. The mechanism of the Kalman Filter with
input estimation.

being
P'(k+lk+1-1)=P (k+I|k+I-1)
+@(k+1-DLk + D¢ (k+1-1) 27)
+uV (k+1-1g},
P’ (k+l|k+D)=[1-K"(k+DH]IP"(k+|k+1-1), (28)
where
Lk+0)=0, L(k+2)=Nk+2WV{ENT (k+2),
Lk+0) =M+ -D)Lk +1-DM" (k+1-1).

For time beyond the interval r<kdr and r<(k+s)At,
state estimation is based upon the original EKF. Note
that the initial states and covariance matrices at

1<(k+s)At are reinitiated by X”(k+s|k+s) and

PV (k + 5|k +5). (22)-(28) form the algorithm and Fig.
2 schematically depicts the proposed filter.
At t>t;, measurements Z, and Z, are sensed.

The estimated inputs #, and #;, are then calculated

using (22) if Z is :eplaced by Z, and Z,
respectively. Substituting &, and &, into (24) and
(25) yields the predicted and updated states )A(v‘;
(e+llk+1-1), X)(k+Ik+]), and Xj (k+]|
k+1-1), Xj(k+Ijk+1I) forthe warhead and body.

4. THE MODIFIED PROBABILISTIC DATA
ASSOCIATION FILTER

PDAF is designed to track a single target in a
cluttered environment. The filter provides the
combined predicted and updated state vectors by
weighting the probability of originating from the
target. The RV reenters with high elevation angle to
the radar. The clutter seldom appears in this region.
For simplicity, the clutter effects may be ignored in
the PDAF. This section presents the modified method,
the MPDAF, by defining proper associate

probabilities without considering the clutter.

During t>t,, two sets of measurement are
detected and the MPDAF is utilized. Assume each
target to be detected in a clear environment with
probability 1. Let z”*! be the vector collecting all
measurements from ~0 to r=(n+1)As, where
n>t,[At. Define the events at time t=(n+1)At to be

0,(n+1)={Z,(n+1) isthe target-originated

measurement}, (29)
O,(n+1)={Z,(n+1) is the target-originated
measurement}, (30)

with association probabilities conditioned on Z"*!
Bo(n+)=Pr{B, (n+1)|2"}, 31)
By(n+1)=Pr{8,(n+ 1)‘2"“}. (32)

Then, the association probabilities should satisfy

B,(n+1)+ By(n+1)=1.

The updated state for the EKF at time #=(n+1)Af can
be regarded as

X (n+1|n+1)= E[X(n + 1)]2"+1 }
Applying the Bayes’ rule yields

E[X(n + 1)’2”“ J _ ELX(n + 1)]9W (n+1), 2" J
xPr{f, (n+ 1)12"”}
+ E{X(n 4 1)'91, (n+1),2" + 1}
X Pr{f, (n+ 1)|Z"}.
Then, X'(n+ 1| n+1), known as the combined
updated state vector, becomes
X’ (n+1|n+D)=B,(m+ DX} (n+1|n+1)

+B,(n+ DXy (n+1|n+1), (33)

where X7 (n+1|n+1) and X}(n+1jn+1) denote

the updated state vectors of the warhead and body,
respectively, and are given by

X3, (n+1n+1) =X} (n+1|n) + K}, (n+1D)v, (n+1),(34)
Xp (n+l|n+1) =X} (n+1n)+ Kj (n+ 1y (n+1), (35)

where the predicted states are determined by the
previous combined updated state,
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X:v (n+ 1| n)=d(n+1)X" (nl n)+ gan,,(n),
Xy (n+1n) = g(n+DX" (n|n) + pp iy (n).

K)(n+1) and K (n+1) express the Kalman gains
for the warhead and body, for which 4 () and

a,(n) are the respective estimated inputs at

t=(n+1)At. The problem then focus on the determina-
tion of B, and B by means of Z " and Z,.
Define the i-th innovation in position with respect

to (wr.t) the warhead and body at r=(n+1)Atr as,
respectively,

vi(n+)=H'Z, (n+1)~ H' X} (n+1]n), (36)
i=1,2,3

v+ )= H'Zy(n+ )= H' X (n+1m), (37,
i=1,2,3

where H' denotes the i-th row of H.

As previously mentioned, the warhead trajectory is
closer to the original than the body. The innovation
for the warhead is then less than for the body if a good
trajectory estimation is provided. Since only two
targets are detected the association probabilities
corresponding to the warhead and body can be then
defined by means of the normalized innovation as

B,(n+1)= , (33)
e +e,
Bp(n+1)= (39)
e +e,
where
~ i Vi (n+ 1))
par Pn >
i [v (n + 1)]
i=1
where P! and P are the ii-th elements of

covariance matrices for the predicted states

Xy(n+1jn) and X} (n+1]n), respectively. Substitut-
ing (38) and (39) into (33) yields the combined
updated state of the object in track at (=(n+1)Ar. (33)-
(39) constitute the algorithm of the MPDAF. This
trajectory should reach the warhead such that radar
beam covers the warhead to maintain the track:

The flow chart of the proposed algorithm
combining the entended Kalman filter with IE and
MPDAF is depicted in Fig. 3.

Returns at
=nAt
.
Z, Y ¢ 7
U 1 b EKF with n
EKE with n EKF withng L Pt
input input X i
I X, X, i Input
Tnput Tnput estimation
estimation estimation u
u
l Ly w | EKF with
EKF with EKF with input
mput input -
~, XV
| x; x; |
Innovation Innovation
w.rt. Z, w.rt Z,
l vw Vb r
Assgc{)a.tli.on Association
probability probability
for Z, for Z,,
ﬂ wl T ‘Lﬂ b
-ombined
updated and
predicted state
X' &
sampling at
t=(nt+1)At

Fig. 3. Flow chart of the proposed algorithm.

5. SIMULATION ANALYSIS

The proposed algorithm performance is measured
to determine the distance between the estimated and
actual warhead trajectories. Let the estimation error
w.r.t. the warhead signify the difference between the
estimated and warhead trajectories. Similarly, the
estimation error w.r.t. the body is the difference
between the estimated and body trajectories. This
section verifies the proposed algorithm in terms of
estimation. error w.r.t the wahead and body. The
proposed algorithm should have a small estimation
error w.r.t. the warhead to ensure the warhead is
constantly tracked.

Case 1: Manuvering warhead

Consider an RV in reentry phase with C=2500
kg/m2 and initial values of x(0)=300m, y(0)=300m,
z(0)=45000m, v(0)=1500m/s, v;(0)=65°, and y»(0) =
15°. The RV splits into the warhead and body at
t,=5s and the warhead undertakes 3G lateral

accelerations in three axes at t=15s. The ballistic
coefficients of the warhead and body are C, =
1500kg/m® and Cy=6000kg/m’, respectively. (1)-(9)
simulate the measured warhead and body trajectories
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Fig. 4. The measured warhead position.
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Fig. 5. The measured warhead velocity.
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Fig. 6. The measured body position.

with normally distributed noise. Figs. 4-7 illustrate the
measured warhead and body trajectories.

Let the ballistic coefficient C=2500kg/m® in
estimation. Fig. 8 demonstrates the corresponding
association probability evolution. The association
probability S, approaches 1 within 3 seconds.
Restated, the estimated trajectory is never influenced

1000 : ' ! ' : :

Oﬁrangei

Measured body velocity (m/sec)

600 f---emeee donneeeed fenmme e fommmaoes :
B s
: | Aftitude |
-1500 L :
0 5 10 15 20 25 30 35
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Fig. 7. The measured body velocity.
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© o & o o o °o
w = U [s7] ~ m [is]

o
%)

0.1

i
15 20 25 30 35
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Fig. 8. The association probability evolution for war-
head and body.
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Fig. 9. The estimation errors w.r.t. the warhead in
position.

by the measurement of the body after 3 seconds. Figs.
9-12 show the estimation errors w.r.t. the warhead and
body. The errors w.r.t. the warhead, which are limited
to +6m in position and +8m/s in velocity, are much
smaller than those w.r.t. the body. Table 1 depicts the
root mean squares (RMS) of estimation error w.r.t. the
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Fig. 10. The estimation errors w.r.t. the body in posi-
tion.
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Fig. 11. The estimation errors w.r.t. the warhead in
velocity.

Table 1. Root mean square of the estimation error.

500 ! : : 5 : !

Errors in velocity(m/sec) r.p.t.body
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Time (sec)

Fig. 12. The estimation errors w.r.t. the body in velo-
city. ‘

Associate probabilities

Time (sec)

Fig. 13. The association probabilities for the warhead
and body.

Table 2. Root mean square of the estimation error in

body |245.33| 580.1 |2,28x10°|23.26{52.21/175.82

warhead are much lower than those w.r.t. the body.
The estimated trajectory follows the maneuvering
warhead trajectory perfectly and provides an accurate
data set to the radar beam former for tracking.

Consider that the RV undertakes the same lateral
accelerations at 2 seconds after separation. Fig. 13
depicts the association probability propagation and
shows 8, to be up to 1 in 4 seconds. It indicates that
the proposed algorithm perform well disregarding the
maneuvering undertaken by the warhead at the time
near separation.

Case 2: Parameter uncertainty

The ballistic coefficient is the crucial parameter for
obtaining the RV, warhead, and body trajectories from
dynamic equations under some assumptions. The

position(m) velocity(m/s) different ballistic coefficient C.
wrt. | Xz Y Zr Xe | Yi Zr position(m) velocity(m/s)
warhead| 3.47 | 2.29 | 1.29 |2.68|2.91| 3.15 C | Xz Yz Zz Xz Yz Zr

3.52 1 2.26 1.41 2.86 | 3.53 | 4.17
(246) | (580) (2.28x10%) (23.5) [ (53.0) | (177)
34 | 23 1.2 2.6 275 | 29
(245) | (580) (2.28x10% | (23.2) | (51.9) | (175)
2.34 | 2.26 1.21 252 | 2,66 | 2.72
(245)(580) (2.28x10% | (23.1) [ (51.6) | (175)
* Value in (.) means the estimation error with respect to body

otherwise with respect to warhead.

1500

3500

5000

ballistic coefficient is a function of time and is hardly
to measure for a defender. A constant is usually set in
the entire estimation procedure. Table 2 presents the
RMS’ of estimation errors for different ballistic
coefficients, which are almost unchanged as compared
with Table 1, that the proposed method is robust to the
parameter uncertainty.

Case 3: Variation of trajectories
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Associate probabilities

Time (sec)

Fig. 14. The association probabilities (C,=1500kg/m?,
C,=4000kg/m?).

Associate probabilities

Time (sec)

Fig. 15. The association probabilities (C,=2000kg/m’,
C,=3000kg/m?).

Associate probabilities

0 I i j i i
o 10 15 20 25 30 35
Time (sec)

Fig. 16. The association probabilities (C,,=7500kg/m’,
C,=1500kg/m>).

The same trajectory is adopted but with different
ballistic coefficients of the warhead and body. Fig. 14
depicts the association probabilities for the warhead
and body with Cw=1500kg/m2 and Cb=4000kg/m2.
The algorithm still works well because the trajectory

of the warhead is close to the original trajectory. With
decreasing values of Cj, the body trajectory gradually
approaches the original and the situations are changed.
Figs. 15 and 16 illustrate the radar tracks the body
clearly, indicating that the algorithm fails. This case
demonstrates that the proposed filter uses the
measurement originating from the object in track, and
would lead the radar to lock to the object with the
closest trajectory to the original.

6. CONCLUSIONS

This study presents a modified probabilistic data
association filter to form an accurate filter for tracking
a warhead that has separated from a reentry vehicle
during the reentry phase. The proposed filter
comprises an extended Kalman filter, an input

“estimator and a modified probabilistic data association

filter. The extended Kalman filter combined with
input estimation can accurately predict the trajectory
and to produce the innovation reliably. The modified
probabilistic data association filter with a well-defined
association probability provides a precision combined
updated state from the warhead and body
measurements. Simulation results monitor the
performance of the recommanded algorithm by
inspecting the estimation error corresponding to the
warhead which should be kept in small. This
investigation therefore concludes that the proposed
algorithm is worthy of further study and application.
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