• Title/Summary/Keyword: redox system

Search Result 243, Processing Time 0.024 seconds

Thioredoxin System and Redox Signaling; Defence against Stress and Toxicity

  • Yodoi, Junji;Masutani, Hiroshi;Nakamura, Hajime
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.84-88
    • /
    • 2001
  • Human Thioredoxin (TRX) with with redox-active dithiol (C-C-Y-C-) in the active site has been cloned as adult T cell leukemia derived factor produced by HTLV-I transformed cells. Thioredoxin (TRX) is one of the major components of the thiol-reducing system and plays multiple roles in cellular processes such as proliferation, apoptosis and gene expression.(omitted)

  • PDF

Characterization of Gel16 as a Cytochrome P450 in Geldanamycin Biosynthesis and in-silico Analysis for an Endogenous Electron Transport System

  • Rimal, Hemraj;Yu, Sang-Cheol;Lee, Byeongsan;Hong, Young-Soo;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.44-54
    • /
    • 2019
  • Geldanamycin and its derivatives, inhibitors of heat shock protein 90, are considered potent anticancer drugs, although their biosynthetic pathways have not yet been fully elucidated. The key step of conversion of 4,5-dihydrogeldanamycin to geldanamycin was expected to catalyze by a P450 monooxygenase, Gel16. The adequate bioconversions by cytochrome P450 mostly rely upon its interaction with redox partners. Several ferredoxin and ferredoxin reductases are available in the genome of certain organisms, but only a few suitable partners can operate in full efficiency. In this study, we have expressed cytochrome P450 gel16 in Escherichia coli and performed an in vitro assay using 4,5-dihydrogeldanamycin as a substrate. We demonstrated that the in silico method can be applicable for the efficient mining of convenient endogenous redox partners (9 ferredoxins and 6 ferredoxin reductases) against CYP Gel16 from Streptomyces hygroscopicus. The distances for ligand FDX4-FDR6 were found to be $9.384{\AA}$. Similarly, the binding energy between Gel16-FDX4 and FDX4-FDR6 were -611.88 kcal/mol and -834.48 kcal/mol, respectively, suggesting the lowest distance and binding energy rather than other redox partners. These findings suggest that the best redox partners of Gel16 could be NADPH ${\rightarrow}$ FDR6 ${\rightarrow}$ FDX4 ${\rightarrow}$ Gel16.

MnCo2S4/CoS2 Electrode for Ultrahigh Areal Capacitance

  • Pujari, Rahul B.;Lokhande, C.D.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.215-219
    • /
    • 2020
  • MnCo2S4/CoS2 electrode with highly accessible electroactive sites is prepared using the hydrothermal method. The electrode exhibits an areal capacitance of 0.75 Fcm-2 at 6 mAcm-2 in 1 M KOH. The capacitance is further increased to 2.06 Fcm-2 by adding K3Fe(CN)6 and K4Fe(CN)6 (a redox couple) to KOH. This increment is associated with the redox-active properties of cobalt and manganese transition metals, as well as the ion pair of [Fe(CN)6]-3/[Fe(CN)6]-4. The capacitance retention of the MnCo2S4/CoS2 electrode is 87.5% for successive 4000 charge-discharge cycles at 10 mAcm-2 in a composite electrolyte system of KOH and ferri/ferrocyanide. The capacitance enhancement is supported by the lowest equivalent series resistance (0.62 Ωcm-2) of MnCo2S4/CoS2 in the presence of redox additive couple compared with the bare KOH electrolyte.

The Possibility of 1,3,4-Oxadiazole Containing Polymer as a New Polymer Electrode in Redox Supercapacitor

  • Ryu, Kwang-Sun;Chang, Soon-Ho;Kwon, Soon-Ki;Kim, Yun-Hi;Hwang, Do-Hoon
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.40-43
    • /
    • 2002
  • Poly(1', 4'-phenylene-1", 4"-(2"-(2""-ethyl-hexyloxy)) phenylene-1",4"-phenylene-2,5-oxadiazolyl) (PPEPPO) was synthesized and its electrochemical characteristics was investigated as electrode material in redox supercapacitor. The cyclic voltammetry (CV) shows there was scarcely a redox reaction and further suggests n-doping is difficult to occur in this system. However, the discharge curve between 3.0 to 0.01 V is continuously decreased like a straight line, similar to the discharge pattern of EDLC. The initial specific discharge capacitance is ~6.4 F/g, while the specific capacitance of 1000th cycle is ~0.1 F/g. The PPEPPO can be used as the electrode of supercapacitor, emissive material, as well as charge-transporting material in polymer LED.ansporting material in polymer LED.

Research Trend of Polymeric Ion-Exchange Membrane for Vanadium Redox Flow Battery (바나듐계 레독스 흐름 전지용 고분자 이온교환막의 연구개발 동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.285-300
    • /
    • 2012
  • Vanadium redox flow battery is believed to be one of important energy storage technologies, because it has many advantages, including long cycle life, high energy efficiency, low cost of maintenance, and environmental friendship. As one of the key components of vanadium redox flow battery system, an ion exchange membrane is required to prevent cross-mixing of the positive and negative electrolytes while allowing ionic continuity. However, ion exchange membrane such as Nafion using in VRBs still face some challenges in meeting performance and cost requirements for broad penetration. Therefore, to resolve these problems, developed various ion exchange membranes are investigated and compared with Nafion membranes in terms of their performance in vanadium redox flow battery.

The effect of Rh/Ce/Zr additives on the redox cycling of iron oxide for hydrogen storage (산화철의 환원-산화 반응을 이용한 수소저장에 미치는 Rh/Ce/Zr의 효과)

  • Lee, Dong-Hee;Cha, Kwang-Seo;Park, Chu-Sik;Kang, Kung-Soo;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.49-52
    • /
    • 2007
  • We investigated hydrogen storage and production properties using redox system of iron oxide($Fe_{3}O_{4}$ + $4H_{2}$ ${\leftrightarrows}$ 3Fe + $4H_{2}O$) modified with rhodium, ceria and zirconia under atmospheric pressure. Reduction of iron oxide with hydrogen(hydrogen storage) and re-oxidation of reduced iron oxide with steam(hydrogen evolution) was carried out using a temperature programmed reaction(TPR) technique. On the temperature programmed studies, the effects of amounts of cerium and zirconium on the re-oxidation rate of partial reduced iron oxides were increased with increasing metal additives amount, but the rhodium amount showed little effect on the re-oxidation rate. On the thermal studies, the re-oxidation rates were enhanced with increasing temperature(300 $^{\circ}C$ < 350 $^{\circ}C$).

  • PDF

Redox-modulation of NMDA receptor activity by nitric oxide congeners

  • Kim, Won-Ki;Stuart A. Lipton
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.125-132
    • /
    • 1995
  • In neurons, nitric oxide(NO) is produced by neuronal nitric oxide synthase following stimulation of N-methyl-D-aspartate(NMDA) receptors and the subsequent influx of Ca$\^$2+/. NO, induced in this manner, reportedly plays critical roles in neuronal plasticity, including neurite outgrowth, synaptic transmission, and long-term potentiation(LTP) (1-7). However, excessive activation of NMDA receptors has also been shown to be associated with various neurological disorders, including focal ischemia, epilepsy, trauma, neuropathic pain and chronic neurodegenerative maladies, such as Parkinson's disease, Hungtington's disease and amyotrophic lateral sclerosis(8). The paradox that nitric oxide(NO) has both neuroprotective and neurodestructive effects may be explained, at least in part, by the finding that NO effects on neurons are dependent on the redox state. This claim may be supported by the recent finding that tissue concentrations of cysteine approach 700 ${\mu}$M in settings of cerebral ischemia (9), levels of thiol that is expected to influence both the redox state of the system and the NO group itself(10).

  • PDF

Glycation-induced Inactivation of Antioxidant Enzymes and Modulation of Cellular Redox Status in Lens Cells

  • Shin, Ai-Hyang;Oh, Chang-Joo;Park, Jeen-Woo
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.577-581
    • /
    • 2006
  • Oxidative mechanisms are thought to have a major role in cataract formation and diabetic complications. Antioxidant enzymes play an essential role in the antioxidant system of the cells that work to maintain low steady-state concentrations of the reactive oxygen species. When HLE-B3 cells, a human lens cell line were exposed to 50-100 mM glucose for 3 days, decrease of viability, inactivation of antioxidant enzymes, and modulation of cellular redox status were observed. Significant increase of cellular oxidative damage reflected by lipid peroxidation and DNA damage were also found. The glycation-mediated inactivation of antioxidant enzymes may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the long term complications of diabetes.

Development of 100kW Grid-Connected PCS for Vanadium Redox flow Battery (바나듐 레독스 플로우 전지용 100kW급 계통연계형 PCS 개발)

  • Choi, Eun-Sik;Lee, Chung-Woo;Ryu, Kang-Yeul;Kang, Byung-Kwan;Oh, Seung-Hun;Lee, Yun-Jae;Koh, Kwang-Soo;Kim, Hee-Jung
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.115-116
    • /
    • 2013
  • Recently environmental problems such as greenhouse gas emissions has become a global problem. As a result, the current that can be easily used to Petroleum and coal reserves of fossil energy and environmental issues, coupled with the limitations of this finding for renewable energy to replace the movement is spreading around the world. Among them Energy Storage System with secondary battery technology has been increased interest in, Redox flow batteries, unlike the conventional theory, the life of the rechargeable battery almost no restrictions existing lithium-ion batteries 10 times more than the life of the road. In this paper, power plant or power system, installed in a building that can cope with the rapid increase in demand for power redox flow battery for 100kW PCS will be introduced.

  • PDF

Design and decoration of heparin on porous nanosilica via reversible disulfide linkages for controlled drug release

  • Nguyen, Dai Hai
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.320-330
    • /
    • 2017
  • Porous nanosilica (PNS) has been identified as a potential candidate for controlled drug delivery. However, unmodified PNS-based carriers exhibited an initial release of loaded bioactive agents, which may limit their potential clinical applications. In this study, the surface of PNS was functionalized with adamantylamine (ADA) via disulfide bonds (-S-S-), PNS-S-S-ADA, which was then modified with cyclodextrin (CD)-heparin (Hep) (CD-Hep), PNS-S-S-CDH, for redox triggered rhodamine B (RhB) delivery. The obtained samples were then characterized by proton nuclear magnetic resonance ($^{1}H\;NMR$), Fourier transform infrared (FTIR), and transmission electron microscope (TEM). These results showed that PNS-S-S-CDH was successfully formed with spherical shape and average diameter of $45.64{\pm}2.33nm$. In addition, RhB was relatively encapsulated in the PNS-S-S-CDH (RhB@PNS-S-S-CDH) and slowly released up to 3 days. The release of RhB, in particular, was triggered due to the cleavage of -S-S- in the presence of dithiothreitol (DTT). It might be anticipated that the modified PNS can be used as redox-responsive drug delivery system in cancer therapy.