Glycation-induced Inactivation of Antioxidant Enzymes and Modulation of Cellular Redox Status in Lens Cells

  • Shin, Ai-Hyang (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Oh, Chang-Joo (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Park, Jeen-Woo (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Published : 2006.07.01

Abstract

Oxidative mechanisms are thought to have a major role in cataract formation and diabetic complications. Antioxidant enzymes play an essential role in the antioxidant system of the cells that work to maintain low steady-state concentrations of the reactive oxygen species. When HLE-B3 cells, a human lens cell line were exposed to 50-100 mM glucose for 3 days, decrease of viability, inactivation of antioxidant enzymes, and modulation of cellular redox status were observed. Significant increase of cellular oxidative damage reflected by lipid peroxidation and DNA damage were also found. The glycation-mediated inactivation of antioxidant enzymes may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the long term complications of diabetes.

Keywords

References

  1. Baynes, J. W., Role of oxidative stress in development of complications in diabetes. Diabetes, 40, 405-412 (1991) https://doi.org/10.2337/diabetes.40.4.405
  2. Biemel, K. M., Friedl, D. A., and Lederer, M. O., Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J. Biol. Chem., 277, 24907- 24915 (2002) https://doi.org/10.1074/jbc.M202681200
  3. Brownlee, M., Vlassara, H., and Cerami, A., Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Int. Med., 101, 527-537 (1984) https://doi.org/10.7326/0003-4819-101-4-527
  4. Brownlee, M., Biochemistry and molecular biology of diabetic complications. Nature, 414, 813-820 (2000) https://doi.org/10.1038/414813a
  5. Chance, B., Sies, H., and Boveris, A., Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59, 527-605 (1979) https://doi.org/10.1152/physrev.1979.59.3.527
  6. Duhaiman, A. S., Rabbani, N., and Cotlier, E., Camel lens crystallins glycosylation and high molecular weight aggregate formation in the presence of ferrous ions and glucose. Biochem. Biophys. Res. Commun., 173, 823-832 (1990) https://doi.org/10.1016/S0006-291X(05)80861-7
  7. Jiang, Z. Y., Hunt, J. V., and Wolff, S. P., Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem., 202, 384-389 (1992) https://doi.org/10.1016/0003-2697(92)90122-N
  8. Kil, I. S., Lee, J. H., Shin, A. H., and Park, J.-W., Glycationinduced inactivation of $NADP^+$-dependent isocitrate dehydrogenase: Imp;ications for diabetes and aging. Free Radic. Biol. Med., 37, 1765-1778 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.08.025
  9. Lee, S. M., Koh, H. J., Park, D. C., Song, B. J., Huh, T. L., and Park, J. W., Cytosolic $NADP^+$-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med., 32, 1185-1196 (2002) https://doi.org/10.1016/S0891-5849(02)00815-8
  10. McCord, J. M. and Fridovich, I., Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 224, 6049-6055 (1969)
  11. Meister, A. and Anderson, M. E., Glutathione. Ann. Rev. Biochem., 52, 711-760 (1983) https://doi.org/10.1146/annurev.bi.52.070183.003431
  12. Myint, T., Hoshi, S., Ookawara, T., Miyazawa, N., Suzuki, K., and Taniguchi, N., Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG. Biochim. Biophys. Acta, 1272, 73-79 (1995) https://doi.org/10.1016/0925-4439(95)00067-E
  13. Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I., and Brownlee, M., Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404, 787-790 (2001) https://doi.org/10.1038/35008121
  14. Okimoto, Y., Watanabe, A., Niki, E., Yamashita, T., and Noguchi, N., A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett., 474, 137-140 (2000) https://doi.org/10.1016/S0014-5793(00)01587-8
  15. Park, J. W. and Floyd, R. A., Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA. Free Radic. Biol. Med., 12, 245-250 (1992) https://doi.org/10.1016/0891-5849(92)90111-S
  16. Shibutani, S., Takeshita, M., and Grollman, A. P., Insertion of specific base during DNA synthesis past the oxidationdamaged base 8-oxodG. Nature, 349, 431-434 (1991) https://doi.org/10.1038/349431a0
  17. Struthers, L., Patel, R., Clark, J., and Thomas, S., Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues. Anal. Biochem., 255, 20-31 (1998) https://doi.org/10.1006/abio.1997.2354
  18. Sundaresan, M., Yu, Z. Y., Ferrans, C. J., Irani, K., and Finkel, T., Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 270, 296-299 (1995) https://doi.org/10.1126/science.270.5234.296
  19. Tabatabaie, T. and Floyd, R. A., Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch. Biochem. Biophys., 314, 112-119 (1994) https://doi.org/10.1006/abbi.1994.1418
  20. Tauskela, J. S., Hewitt, K., Kang, L. P., Comas, T., Gendron, T., Hakim, A., Hogan, M., Durkin, J., and Morley, P., Evaluation of glutathione-sensitive fluorescent dyes in cortical culture. Glia, 30, 329-341 (2001) https://doi.org/10.1002/(SICI)1098-1136(200006)30:4<329::AID-GLIA20>3.0.CO;2-R
  21. Varma, S. D. and Kinoshita, J. H., Sorbitol pathway in diabetic and galactosemic rat lens. Biochim. Biophys. Acta, 328, 632- 640 (1974)
  22. Vincent, M. A., Brownlee, M., and Russell, J. W., Oxidative stress and programmed cell death in diabetic neuropathy. Ann. New York Acad. Sci., 959, 368-383 (2002) https://doi.org/10.1111/j.1749-6632.2002.tb02108.x