• Title/Summary/Keyword: Lens cells

Search Result 76, Processing Time 0.026 seconds

A Morphologic Study on the Differentiation of Chicken Embryo Lens (계배(鷄胚) lens의 분화(分化)에 관(關)한 형태학적(形態學的) 연구(硏究))

  • Deung, Young-Kun;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.22 no.1
    • /
    • pp.103-112
    • /
    • 1992
  • Embryonic and postembryonic chicken lenses have been analyzed morphologically to investigate the differentiation of the lens fibers by light and electron microscopes. Morphogenesis of the chick lens was initiated as lens epithelial cells were proliferated and proceeded to elongate the cells characteristically at posterior side, by which the disintegrations of nuclei were accompanied during the early developmental stages. Primary and secondary lens fibers were identified at the late developmental stages, while interconnections between neigh-boring cells well developed and denucleation commenced. On day of hatching, the chicken lens fibers contained few cell organelles within the cytoplasm and showed the homogeneity of cytoplasmic appearance. On day 10 of hatching, the lens were fully differentiated; fiber cells, in which most cell organelles except polysomes were disappeared, showed a slender and elongated prismatic shape. At that stage gap junctions were particularly developed or cytoplasmic ridges are closely interlocked between adjoining cells. In conclusion, differentiation of chick lens involves the division of epithelial cells, the elongation into fiber cells, the loss of cell organelles and the increase of gap junction.

  • PDF

Morphology of Retinas and Lenses in the Fish of the Genus Zacco (Cypriniformes, Cyprinidae): Possible Relationship with Prey and Habitat

  • Lim, Jae-Won;Lee, Chung-Lyul;Lee, Moo-Sam
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.331-335
    • /
    • 2003
  • Vertebrates with different habitats have different proportions of visual cells, with the rod cells responding to scotopic vision and the cone cells responding to photopic and color vision in their retinas. The present work studied whether the kinds and arrangement patterns of the cone cells and interlocking morphology of the lens were related to the kind of preys and habitats in the genus Zacco. The retinas were observed by a light microscopy using H-E staining method and the interlocking formula of the lens fibers were investigated by a scanning electron microscopy. The interlocking formula of the lens fibers of Z. temmincki is an ' anchor and socket ' connection, and that of Z. platypus is a ' ball and socket ' connection. The cone cells of Z. platypus and Z. temmincki constituted compacted mosaic patterns of row type. Away from the center, the double and single cone cells gradually increased in diameter. Zacco temmincki had identical double cone cells and Z. platypus had non-identical double and single cone cells. The eyes of Z. temminckifeeding on a moving aquatic insects in relative limpid water and swift current of mid and upper stream have better resolution than that of Z. platypus feeding on mainly adhesive algae and some aquatic insects in slightly turbid water of mid stream.

Morphology of Drosophila Ocellar Corneagenous Cells to the Development (초파리 단안의 발생시기에 따른 각막형성세포의 형태)

  • Yoon, Chun-Sik
    • Applied Microscopy
    • /
    • v.29 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • Morphological changes of Drosophila ocellar corneagenous cells were studied to the development with electron microscopy, and the movement of produced proteins was traced with autoradiography. Corneagenous cells of immediate postemergence showed very active secretion pattern. However, a few days after the emergence, the secretory activity of corneagenous cell was supposed to be dropped suddenly. In autoradiography, almost of proteins that produced by corneagenous cells moved toward lens. From this, it was supposed that the corneagenous cells do not function in photoreceptor cells rather in the formation of lens at the postemergence stage. Corneagenous cells of pupal stage were well developed. In the period of lens formation, rER of corneagenous cells were well developed and it suggested very active material metabolism. Granules and microtubules were also frequently observed and the later would be a pathway of the movement of materials. In conclusion, corneagenous cells were well developed at vigorous lens forming stage. After emergence, when the lens formation was completed, both the function and the size of corneagenous cells were reduced.

  • PDF

Electron Microscopic Studies on Distribution of Collagen IV of Lens Capsule and Apoptosis of Lens Epithelium in Age-related Cataractous Human (백내장 환자의 연령에 따른 수정체낭 Type IV 아교섬유의 분포와 수정체낭 상피세포 자연사 및 전자현미경적 변화에 대한 연구)

  • Heo, Jun;Yang, Young-Chul;Won, In-Gun
    • Biomedical Science Letters
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 1998
  • Age-related changes in the lens capsule and epithelium of cataractous patients, ranging from 20 to 7o years old, were studied by means or LM, immunohistochemistry, and TEM. The lens capsule was divided into four zones; the anterior, subanterior, middle, and basal zone. The van Gieson staining reaction for collagen was prominent at the anterior and subanterior parts of the lens capsule. The reaction was more decreased in the elder group than the younger group. The collagen type IV reaction was prominent at the anterior zone of the lens capsule and around the cell. The reaction was more decreased in the elder group than the younger group. 3. The Periodic Acid Shiff-Alcian Blue reaction for mucopolysaccharide was prominent at the anterior zone of the lens capsule. The reaction was more decreased in the elder group than the younger group. The Apoptotic reaction was prominent at the nucleus of the lens epithelial cell. In the elder the cataractous group, the number of the apoptotic cells was more decreased. The electron microscopic change of lens epithelial cells were characterized by the increase of lateral fold and the cytoplasm with various vacuoles and Golgi complex. In the basal part, lens epithelial cell protruded toward the lens capsule in the 20-year-old group. The basal part of the 40-year-old group was flattened and covered with the cytoplasmic processes of adjacent cells. In the 60-year-old group, the mass of rough filaments separated lens capsule and the basal part of the lens epithelial cell. The electron microscopic change of the middle part of lens capsule was characterized by the aggregation of electron dense materials in the 40-year-old group, and the appearance of filamentous materials and the decrease of electron dense granules in the 60-year-old group.

  • PDF

Glycation-induced Inactivation of Antioxidant Enzymes and Modulation of Cellular Redox Status in Lens Cells

  • Shin, Ai-Hyang;Oh, Chang-Joo;Park, Jeen-Woo
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.577-581
    • /
    • 2006
  • Oxidative mechanisms are thought to have a major role in cataract formation and diabetic complications. Antioxidant enzymes play an essential role in the antioxidant system of the cells that work to maintain low steady-state concentrations of the reactive oxygen species. When HLE-B3 cells, a human lens cell line were exposed to 50-100 mM glucose for 3 days, decrease of viability, inactivation of antioxidant enzymes, and modulation of cellular redox status were observed. Significant increase of cellular oxidative damage reflected by lipid peroxidation and DNA damage were also found. The glycation-mediated inactivation of antioxidant enzymes may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the long term complications of diabetes.

Efficacy of Korean Multipurpose Contact Lens Disinfecting Solutions against Acanthamoeba castellanii

  • Moon, Eun-Kyung;Park, Hye-Ryun;Quan, Fu-Shi;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.697-702
    • /
    • 2016
  • Acanthamoeba keratitis has been increasing in recent years. Main risk factors are contact lens wear and their cleaning solutions. Most contact lens wearers use multipurpose disinfecting solutions (MPDS) for cleansing and disinfecting microorganisms because of its convenience. We determined amoebicidal effects of MPDS made in Korea and their cytotoxicity on human corneal epithelium cells. Fifteen commercial MPDS (A to O) were tested for their amoebicidal effects on Acanthamoeba castellanii trophozoites and cysts by using a most probable number (MPN) technique. Among them, 7 kinds of MPDS showed little or no amoebicidal effects for 24 hr exposure. Solutions A, B, G, H, L, and O showed positive amoebicidal effects, and solutions M and N killed almost all trophozoites and cysts after 24 hr exposure. However, 50%-N solution showed 56% cytotoxicity on human corneal epithelial cells within 4 hr exposure, and 50%-O solution also showed 62% cytotoxicity on human cells within 4 hr exposure. Solution A did not show any cytotoxicity on human cells. These results revealed that most MPDS made in Korea were ineffective to kill Acanthamoeba. The solutions having amoebicidal activity also showed high levels of cytotoxicity on human corneal epithelial cells. New formulations for improved MPDS that are amoebicidal but safe for host cells are needed to prevent Acanthamoeba keratitis.

A Characteristics of the Applied SOG Lens for the CPV Module (SOG렌즈를 적용한 집광형 태양전지모듈 특성)

  • Jeong, Byeong-Ho;Lee, Kang-Yoen;Park, Ju-Hoon;Moon, Eun-Ah;Lee, Sang-Hyun;Kim, Dae-Gon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • CPV system in the desert areas or areas near the equator, as is suitable for high-temperature region. As compared to silicon solar cells, CPV system have a high proportion of a BOS (balance of system). Solar cells because of its low proportion when designing a module technology is applied in a variety of ways. Applied to the CPV system is classified into two kinds of optical technology. One of those using fresnel lens uses refraction of light energy. The other is a mirror reflection of the structure using sprays. Both of these two ways to condense the sun to collect solar cell is a form of light. And goals by using a small solar cell materials is to produce more energy. In this paper, suitable for a domestic environment, with the aim CPV Manufacturing Technology, built on a variety of modular process technology to the development of a prototype performance analysis was carried out. In particular, silicone coated on the glass by the method of implementation of the Fresnel lens SOG(Silicon on glass) by applying the lens to absorb the solar spectrum was broad. In addition to, for the analyze to characteristics of the CPV module, developed CPV module performance and generating characteristics studied. These related technology through research and development of high-performance multi-junction solar cells, modules, development of concentrating solar power systems to facilitate the growth of the market is considered to be.

Diagnosis of Unstained Biological Blood Cells Using a Phase Hologram Displayed by a Phase-only Spatial Light Modulator and Reconstructed by a Fourier Lens

  • Ibrahim, Dahi Ghareab Abdelslam
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.598-607
    • /
    • 2022
  • In this paper, a simple nondestructive technology is used to investigate unstained biological blood cells in three dimensions (3D). The technology employs a reflective phase-only spatial light modulator (SLM) for displaying the phase hologram of the object being tested, and a Fourier lens for its reconstruction. The phase hologram is generated via superposing a digital random phase on the 2D image of the object. The phase hologram is then displayed by the SLM with 256 grayscale levels, and reconstructed by a Fourier lens to present the object in 3D. Since noise is the main problem in this method, the windowed Fourier filtering (WFF) method is applied to suppress the noise of the reconstructed object. The quality of the reconstructed object is refined and the noise level suppressed by approximately 40%. The technique is applied to objects: the National Institute of Standards (NIS) logo, and a film of unstained peripheral blood. Experimental results show that the proposed technique can be used for rapid investigation of unstained biological blood cells in 3D for disease diagnosis. Moreover, it can be used for viewing unstained white blood cells, which is still challenging with an optical microscope, even at large magnification.

Sub-pixel Multiplexing for Autostereoscopic Full Parallax 3D (무안경 완전시차 입체 재현을 위한 서브픽셀 다중화)

  • Eum, Homin;Lee, Gwangsoon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.2009-2015
    • /
    • 2017
  • A two-dimensional lens is required to reproduce both the horizontal and vertical parallax through an autostereoscopic 3D display. Among the two-dimensional lenses, a hexagonal micro lens array (MLA) having good optical efficiency is mainly used. However, the hexagonal MLA has complex geometric features. The first feature is that the lens cells are zigzagged in the vertical direction, which should be reflected in the view number calculation for each sub-pixel. The second feature is that the four sides of a hexagonal lens cell are tilted, requiring a more careful view index assignment to the lens cell. In this paper, we propose a sub-pixel multiplexing scheme suitable for the features of the hexagonal MLA. We also propose a view-overlay algorithm based on a two-dimensional lens and compare subjective image quality with existing view-selection through autostereoscopic 3D display implementation.

A Study on the Performance Analysis for the CPV Module Applying Sphericalness Lens (구형렌즈를 적용한 CPV 모듈 발전성능 분석에 관한 연구)

  • Jeong, Byeong-Ho;Kim, Nam-Oh;Lee, Kang-Yoen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.293-297
    • /
    • 2010
  • Next generation concentrating photovoltaic technologies could have a large-scale impact on world electricity production once they will become economically attractive and grid parity will be reached. Multi-junction solar cells will be characterised by a high value of the cell economical performance index if the cells were able to operate at high concentration level. Concentrating the sunlight by optical devices like lenses or mirrors reduces the area of expensive solar cells or modules, and, moreover, increases their efficiency. Accurate and reliable tracking is an important issue to maintain high the CPV system output power. Further, for high concentration CPV systems, the actual tracker cost is about 20% of the total CPV system cost. In this paper high-concentration is defined as systems using concentration ratios well above 100 times the one sun intensity and trackerlss CPV system studied. Using sphericalness lens and parallel MJ cell connection method were suggested and achieved experiment on a clear day in summer. Development of these high performance multi-junction CPV module promises to accelerate growth in photovoltaic power generation.