• Title/Summary/Keyword: redox current

검색결과 181건 처리시간 0.031초

Study on Redox State of Environmental Pollutant

  • Choi, Chi-Nami;Yang, Hyo-Kyung;Na, Eun-Jung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_2호
    • /
    • pp.65-71
    • /
    • 2001
  • The chemical behavior and properties related to the redox state of environmental pollutants were investigated using electrochemical methods. Measurements were taken of variations in the redox potential and cyclic polarization current. The results established the influence of various factors, including concentration, temperature, salt, and pH, on the redox potential and current. These factors were determined to effect the result of the redox reaction. Optimum conditions were also established for each case. It was clearly established that the electrode reaction was from a reversible to an irreversible process, plus it was also mixing reaction current controlled.

  • PDF

Electrochemical Signal Amplification by Redox Cycling in Distance-Controlled Nanogap Devices

  • Park, Dae Keun;Park, Jong Mo;Shin, Jong-Hwan;Yun, Wan Soo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.269-269
    • /
    • 2013
  • Redox cycling in between the two working electrodes in an electrochemical cell can lead a great signal enhancement. In this work, we report on a systematic examination of current amplification along with the decrease in the gap distance of a nanogap device which was fabricated by the combination of photo and chemical lithography [1]. The gap distance was controlled by the chemical lithographic process of surfacecatalyzed growth of metallic layer on pre-defined electrodes with wider initial gap. Enhancement of the redox current of ferri/ferrocyanide was observed upon gap distance reduction and the current is amplified about a thousand times in this redox system when the gap distance was decreased from 200 nm to 30 nm. The experimental results were discussed on the basis of the cyclic voltammetry (CV), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

  • PDF

Electrochemical Signal Amplification by Gap Electrodes and Control of Gap Distances

  • Park, Dae Keun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.197-200
    • /
    • 2019
  • We report on electrochemical signal amplification using gap electrodes based on the redox cycling between gap electrodes. The distance between electrodes was controlled from $2{\mu}m$ to a few hundreds of nanometer by chemical deposition of reduced Au ion on the pre-defined electrodes. Enhanced redox current of ferri/ferrocyanide was obtained by redox cycling between the two working electrodes. The faradaic current is amplified about a thousand times in this redox system. Since the signal amplification is due to the shortened diffusion length between the two electrodes, the narrower the nanogap was, the better detection limit, calibration sensitivity, and dynamic range. The experimental results were discussed on the basis of the cyclic voltammetry (CV), atomic force microscope (AFM) and scanning electron microscope (SEM) measurements.

Study on Electrochemical Properties of TBT(Tributyltin)

  • Park, Chil-Nam;Yang, Hyo-Kyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_4호
    • /
    • pp.173-179
    • /
    • 2001
  • The chemical behavior and properties of the redox state of environmental pollutants was investigated using electrochemical methods. The purpose was to measure the variations in the redox reaction of differential pulse polarograms and cyclic voltammograms. The results observed the influences on redox potential and current of various factors including concentration, temperature, salt, and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from reversible to irreversible processes. Also, it was mixing with reaction current controlled.

  • PDF

Chemical Properties of Co(II) Compound Containing Endocrine Disrupter, Bis-Phenol A

  • Park, Chil-Nam
    • 한국환경과학회지
    • /
    • 제11권2호
    • /
    • pp.131-137
    • /
    • 2002
  • The chemical behavior and properties on the redox state of environmental pollutant has been investigated by electrochemical methods. We carried out to measure the variations in the redox reaction of differential pulse polarogram and cyclic voltammogram. The results observed the influences on redox potential and current of various factors with temperature and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from qusi-reversible to irreversible processes. Also, it was mixing with reaction current controlled. The bits-phenol A in the waste water was made to compound with cobalt ion and it take away from the separation into compound. The $Co(BPA)_2$ compound was not found to be dissociation in waste water. However, this compound is avery unstable(K=1.02) and for a while, it was to be a dissociation. Therefore, we believed that it was likely to a toxic substance.

바나듐 레독스-흐름 전지에서 집전체의 전기화학적 특성 (Electrochemical Properties of Current Collector in the All-vanadium Redox Flow Battery)

  • 황갑진;오용환;유철휘;최호상
    • Korean Chemical Engineering Research
    • /
    • 제52권2호
    • /
    • pp.182-186
    • /
    • 2014
  • 두 종류의 집전체(BP, bipolar plate)를 사용하여 바나듐 레독스-흐름 전지(V-RFB, vanadium redox-flow battery)의 성능을 평가하였다. V-RFB의 성능평가는 $60mA/cm^2$의 전류밀도에서 진행하였다. A 집전체를 사용한 V-RFB의 기전력(SOC 100%에서의 OVC)은 1.47V, B 집전체를 사용한 V-RFB의 기전력은 1.54V를 나타냈다. A 집전체를 사용한 V-RFB의 셀 저항은 충전시에 $4.44{\sim}5.00{\Omega}{\cdot}cm^2$을, 방전시에 $3.28{\sim}3.75{\Omega}{\cdot}cm^2$를 보였으며, B 집전체를 사용한 V-RFB의 셀 저항은 충전시에 $4.19{\sim}4.42{\Omega}{\cdot}cm^2$, 방전시에 $4.71{\sim}5.49{\Omega}{\cdot}cm^2$를 나타냈다. 각 집전체를 사용한 V-RFB의 성능은 5회 충방전 실험을 진행하여 평가하였다. A 집전체를 사용한 V-RFB는 평균 전류효율 93.1%, 평균 전압효율 76.8%, 평균 에너지효율 71.4%를 나타냈으며, B 집전체를 사용한 V-RFB는 평균 전류효율 96.4%, 평균 전압효율 73.6%, 평균 에너지효율 71.0%를 나타냈다.

바나듐계 산화-환원 유동 전지의 최대 방전전류와 유량의 상관성에 대한 실험적 연구 (Discharged Maximum Current Density of Vanadium Redox Flow Battery with Increased Electrolyte Flow Rate)

  • 김정명;박희성
    • 대한기계학회논문집B
    • /
    • 제40권12호
    • /
    • pp.777-784
    • /
    • 2016
  • 바나듐 전해질 산화-환원 흐름전지(vanadium redox flow batteries, VRFBs)는 간헐적 에너지 저장 시스템의 에너지 저장장치로 사용된다. VRFBs는 재료 및 동작조건에 따라 성능의 차이를 보이며, 각 성능특성에 따른 VRFBs개발이 요구된다. 본 연구에 사용된 단위셀은 반응면적 $25cm^2$이며, 전해액은 0.6의 충전상태를 나타낸다. 방전전류밀도를 0에서 $520mA/cm^2$ 까지 변화시키면서 동시에 전해질 유량도 5mL/min에서 60mL/min까지 변화시켰다. 동일한 입구 전해액 상태에 따른 방전 성능 평가를 위해 4개의 탱크를 사용한 비순환 시스템을 구축하였다. 본 논문은 유량 및 전류밀도의 변화에 대한 단자전압을 측정하였으며, $25cm^2$ 반응면적을 가지는 바나듐계 산화-환원 유동전지 시스템의 최대전류밀도에 대한 실험식을 도출하였다.

Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 고분자량 폴리에텔렌글리콜류의 매개전해산화 (Mediated Electrochemical Oxidation of High Molecular Weight PEGs by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems)

  • 박승조;김익성
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.206-211
    • /
    • 2005
  • 백금과 티탄늄-이리듐전극으로 0.5 M의 철(II)과 코발트(II) 이온을 함유한 8.0 M의 질산용액 중에서 분자량이 1000, 4000, 20000인 폴리에틸렌글리콜류의 매개전해산화를 하였다. Fe(III)/Fe(II)와 Co(III)/Co(II) 산화환원계를 이용하여 전류밀도, 전극종, 전해질농도, 제거효율 등을 검토하였다. 백금전극 상에서 $0.67A/cm^2$의 전류밀도로 180~210 min 간 Fe(III)/Fe(II)와 Co(III)/Co(II) 전해환원계에서 매개전해산화에 의하여 폴리에틸렌글리콜류는 탄산가스로 분해되었다. 매개전해산화시 폴리에틸렌글리콜류의 제거효율은 Fe(III)/Fe(II) 산화환원계보다 Co(III)/Co(II) 산화환원계가 우수하였고 분자량이 1000, 4000, 20000인 폴리에틸렌글리콜류의 매개전해산화 제거효율은 100%이었다.

전류밀도에 따른 바나듐 레독스 흐름 전지의 효율 변화 (Change of the Efficiency in All-Vanadium Redox Flow Battery with Current Density)

  • 최호상;인대민;송영준;유철휘;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.531-535
    • /
    • 2017
  • The performance of all-vanadium redox flow battery (VRFB) was tested with an increase of the current density. APS membrane (anion exchange membrane) and GF050CH (cabon felt) were used as a separator and electrode, respectively. An average energy efficiency of the VRFB was 79.5%, 68.1%, and 62.8% for the current density of $60mA/cm^2$, $120mA/cm^2$, and $160mA/cm^2$, respectively. It was confirmed that VRFB can be used as a energy storage system at the higher current density even if the energy efficiency was deceased about 21%.

염료감응 태양전지용 코발트 전해질의 최신 연구동향 및 전망 (Cobalt Redox Electrolytes in Dye-Sensitized Solar Cells : Overview and Perspectives)

  • 권영진;김환규
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.18-27
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs), developed two decades ago, are considered to be an attractive technology among various photovoltaic devices because of their low cost, accessible dye chemistry, ease of fabrication, high power conversion efficiency, and environmentally friendly nature. A typical DSSCs consists of a dye-coated $TiO_2$ photoanode, a redox electrolyte, and a platinum (Pt)-coated fluorine-doped tin oxide (FTO) counter electrode. Among them, redox electrolytes have proven to be extremely important in improving the performance of DSSCs. Due to many drawbacks of iodide electrolytes, many research groups have paid more attention to seeking other alternative electrolyte systems. With regard to this, one-electron outer sphere redox shuttles based on cobalt complexes have shown promising results: In 2014, porphyrin dye (SM315) with the cobalt (II/III) redox couple exhibited a power conversion efficiency of 13% in DSSCs. In this review, we will provide an overview and perspectives of cobalt redox electrolytes in DSSCs.