• Title/Summary/Keyword: recycled asphalt concrete

Search Result 62, Processing Time 0.024 seconds

Characteristics of Asphalt Concrete using Waste Foundry Sand (주물고사 첨가 아스팔트 콘크리트의 특성에 관한 연구)

  • Kim, Kwang-Woo;Ko, Dong-Hyuk;Choi, Dong-Chon;Kim, Sung-Won;Kim, Joong-Yul
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.105-116
    • /
    • 2001
  • This study was performed to evaluate the characteristics of waste foundry sand (WFS) and the asphalt mixture made of a foundry waste sand. To estimate the applicability of WFS, chemical and physical properties were measured by XRF(X-ray fluorescent), and SEM(Scanning electronic microfilm). To improve the stripping resistance of WFS asphalt mixture, anti-stripping agents (a hydrated lime and a liquid anti-stripping agent) were used. To improve tensile properties and durability of WFS asphalt concrete mixture, LDPE(low-density polyethylene) was used as an asphalt modifier Marshall mix design, indirect tensile strength, tensile strength ratio(TSR) after freezing and thawing, moisture susceptibility and wheel tracking tests were carried out to evaluate performance of WFS asphalt concrete. Comparing with conventional asphalt concrete, WFS asphalt concretes showed similar or the better qualify in mechanical properties, and satisfied all specification limits. Therefore, it Is concluded that waste foundry sand can be recycled as an asphalt pavement material.

  • PDF

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.

Investigating meso-scale low-temperature fracture mechanisms of recycled asphalt concrete (RAC) via peridynamics

  • Yuanjie Xiao;Ke Hou;Wenjun Hua;Zehan Shen;Yuliang Chen;Fanwei Meng;Zuen Zheng
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2024
  • The increase of reclaimed asphalt pavement (RAP) content in recycled asphalt concrete (RAC) is accompanied by the degradation of low-temperature cracking resistance, which has become an obstacle to the development of RAC. This paper aims to reveal the meso-scale mechanisms of the low-temperature fracture behavior of RAC and provide a theoretical basis for the economical recycling of RAP. For this purpose, micromechanical heterogeneous peridynamic model of RAC was established and validated by comparing three-point bending (TPB) test results against corresponding numerical simulation results of RAC with 50% RAP content. Furthermore, the models with different aggregate shapes (i.e., average aggregates circularity (${\bar{C_r}}=1.00$, 0.75, and 0.50) and RAP content (i.e., 0%, 15%, 30%, 50%, 75%, and 100%) were constructed to investigate the effect of aggregate shape and RAP content on the low-temperature cracking resistance. The results show that peridynamic models can accurately simulate the low-temperature fracture behavior of RAC, with only 2.9% and 13.9% differences from the TPB test in flexural strength and failure strain, respectively. On the meso-scale, the damage in the RAC is mainly controlled by horizontal tensile stress and the stress concentration appears in the interface transition zone (ITZ). Aggregate shape has a significant effect on the low-temperature fracture resistance, i.e., higher aggregate circularity leads to better low-temperature performance. The large number of microcracks generated during the damage evolution process for the peridynamic model with circular aggregates contributes to slowing down the fracture, whereas the severe stress concentration at the corners leads to the fracture of the aggregates with low circularity under lower stress levels. The effect of RAP content below 30% or above 50% is not significant, but a substantial reduction (16.9% in flexural strength and 16.4% in failure strain) is observed between the RAP content of 30% and 50%. This reduction is mainly attributed to the fact that the damage in the ITZ region transfers significantly to the aggregates, especially the RAP aggregates, when the RAP content ranges from 30% to 50%.

A Study on Mechanical Performance Evaluation and Economic Analysis by Reclaimed Hot Asphalt Pavement (순환 가열 아스팔트의 용도별 기계적성능 평가 및 경제성 분석 연구)

  • Mun, Sung Ho;Ka, Hyun Gil;Lee, Ci Won;Park, Yong Boo
    • Land and Housing Review
    • /
    • v.10 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • The government is encouraging the notice of obligatory reclaimed asphalt as a result of the economic and social positioning of green growth to reduce the amount of waste resources and to solve natural resource problems by recycling continuously generated waste resources. However, it is necessary to develop application guideline for each application to apply reclaimed asphalt to the site because quality control of the reclaimed asphalt is difficult and the specifications are ambiguous as well. Therefore, in this study, the mix design, quality test, performance test, and finite element analysis about reclaimed Asphalt Pavement were conducted to develop application guideline for reclaimed hot asphalt. The mix design was carried out for the comparative general hot mix asphalt mixture, the reclaimed hot mix asphalt mixture using the additive, and the reclaimed hot mix asphalt mixture without the additive. Indirect tensile strength and tensile strength ratio tests were used to characterize the reclaimed hot mix asphalt mixture. Using the results of dynamic modulus test and FWD test for KPRP analysis and finite element analysis, the performance life was evaluated for general pavement and pavement using recycled aggregate. Finally, the life cycle cost analysis was used to compare and analyze the economics of reclaimed asphalt concrete pavement.

A Study on Performance Evaluation of New Asphalt Surface Reinforcement Method (ASRM) for Preventive Maintenance (예방적 유지보수를 위한 아스팔트 표면강화공법의 실내 성능 평가)

  • Kim, Kyungnam;Jo, Shin Haeng;Kim, Nakseok;Lee, Doosung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.311-317
    • /
    • 2018
  • The new asphalt surface reinforcement method (ASRM) is one of the preventive maintenance methods in asphalt concrete pavements. The adhesion performance of new ASRM satisfied the standard of non-slip pavement and bridge waterproofing materials. As a results of durability tests (as wheel load, rolling bottle and UV resistance test), the new ASRM showed sufficient resistance to traffic and environmental loads. The waterproof and chemical resistance tests of new ASRM were conducted to evaluate whether the pavement could be protected from water and chemicals and the performances of new ASRM were satisfactory. Furthermore, the new ASRM demonstrated some rejuvenation effects due to its toughness increases in recycled asphalt concrete mixture by 5% compared to the conventional hot mix asphalt mixture using reclaimed asphalt pavement. In conclusion, the new ASRM was evaluated to protect the asphalt concrete pavement and increase the lifetime.

Mechanical Properties of Permeable Polymer Concrete for Permeability Pavement with Recycled Aggregate and Fiber Volume Fraction (재생골재 및 섬유 혼입률에 따른 포장용 투수성 폴리머 콘크리트의 역학적 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.69-77
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood, and increase and purification of underwater resource. This study was performed to evaluate permeability, strengths and durability of permeable polymer concrete (PPC) using recycled aggregate that is obtained from waste concrete. Also, 6mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. In the test results, regardless of kinds of aggregates and fiber contents, the compressive strength and permeability coefficient of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. The weight reduction ratios for PPC after 300 cycles of freezing and thawing were in the range of 1.6~3.8 % and 2.2~5.6 %, respectively. The weight change ratio was very low regardless of the fiber volume fraction and aggregates. The weight reduction ratios of PPC with fiber and aggregate were in the range of 1.3~2.7 % and 2.2~3.2 % after 13 weeks and was very low regardless of the fiber volume fraction and aggregates.

Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire (폐타이어 재활용 아스팔트 콘크리트의 역학적 특성)

  • 김낙석;이우열
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete usmg waste tire t to evaluate the mechanical prope$\pi$ies in comparison with conventional asphalt concrete. According to the test results, the m modified product, lias superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the m resistance of dmability. The experimental results should recommend thut the waste tir$\xi$ is positively recycled for asphak concrete.

  • PDF