• Title/Summary/Keyword: recycled aggregate concrete (RCA)

Search Result 67, Processing Time 0.02 seconds

Flexural Strength of Reinforced Concrete Beams Containing Recycled Coarse Aggregate (순환굵은골재를 사용한 철근콘크리트 보의 휨강도)

  • Yang, In-Hwan;An, Seul-Ki;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • This paper concerns flexural strength of reinforced concrete beams containing recycled coarse aggregate (RCA) with compressive strength ranging from 31 to 38 MPa. The experimental parameters were replacement ratio of RCA and rebar ratio. Replacement ratio of RCA was 0, 30, 50 and 100%, and rebar ratio was 0.50, 0.79 and 1.14%. The RCA concrete beams were tested by using four-point bending test, and experimental results were discussed regarding crack and failure patterns, load-deflection relationship. Crack pattern of concrete beams with RCA was similar to that of concrete beams with natural coarse aggregate (NCA) but overall crack spacing of concrete beams with RCA was smaller than that of concrete beams with NCA. The crack width of RCA and NCA concrete beams was similar to each other. In addition, the test results of flexural strength were compared to the design code predictions. The design code predictions for flexural strength underestimated the experimental results. Therefore, the design code predictions for flexural strength of RCA concrete beams would offer conservative design.

Effect of reaction temperature and time on the formation of calcite precipitation of recycled concrete aggregate (RCA) for drainage applications

  • Boo Hyun Nam;Jinwoo An;Toni Curate
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 2023
  • Recycled concrete aggregate (RCA) is widely used as a construction material in road construction, concrete structures, embankments, etc. However, it has been reported that calcite (CaCO3) precipitation from RCA can be a cause of clogging when used in drainage applications. An accelerated calcite precipitation (ACP) procedure has been devised to evaluate the long-term geochemical performance of RCA in subsurface drainage systems. While the ACP procedure was useful for the French Drain application, there remained opportunities for improvement. In this study, key factors that control the formation of calcite precipitation were quantitatively evaluated, and the results were used to improve the current prototype ACP method. A laboratory parametric study was carried out by investigating the effects of reaction temperature and time on the formation of calcite precipitation of RCA, with determining an optimum reaction temperature and time which maximizes calcite precipitation. The improved ACP procedure was then applied to RCA samples that were graded for Type I Underdrain application, to compare the calcite precipitation. Two key findings are (1) that calcite precipitation can be maximized with the optimum heating temperature (75℃) and time (17 hours), and (2) the potential for calcite precipitation from RCA is not as significant as for limestone. With the improved ACP procedure, the total amount of calcite precipitation from RCAs within the life cycle of a drain system can be determined when RCAs from different sources are used as pipe backfill materials in a drain system.

Property Evaluation of the Concrete Replacing 5-13mm Recycled Coarse Aggregates (5~13mm 입도분급 순환 굵은 골재 혼합사용에 따른 콘크리트의 특성평가)

  • Han, Min-Cheol;Song, Young-Wo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • This paper is to investigate experimentally the effect of substitution of recycled coarse aggregate(RCA) under 13mm on the engineering properties of the concrete using gap graded coarse aggregates. Concretes with 0.4 of water to cement ratio(W/C) were fabricated to achieve 30MPa of design strength with coarse aggregate over 13mm in size with the maximum size of 25mm. RCA was substituted for coarse aggregate over 13mm from 10% to 50% and crushed coarse aggregate under 13mm was also substituted for coarse aggregate over 13mm from 20% to 40%, respectively. Test results indicated that the replacement of RCA up to 20% resulted in an increase of fluidity and strength. It also caused a decrease in the drying shrinkage due to dense packing effect by achieving continuous grading of mixed aggregates. For practical application of RCA, when properly substituted, the use of RCA enabled the concrete to reduce water contents and sand to aggregate ratio in mixing design stage of the concrete. And, it can also enhance the compressive strength of the concrete.

Assessment of Leaching Characteristics of Alkaline and Heavy Metal Ions from Recycled Concrete Aggregate (자원순환을 위한 폐콘크리트 순환골재의 알칼리 및 중금속 용출특성 평가)

  • Shin, Taek-Soo;Hong, Sang-Pyo;Kim, Kwang-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.427-437
    • /
    • 2013
  • Generation rate of construction wastes in Korea has occupied preponderantly in recent years. To understand chemical properties of recycled concrete aggregate (RCA), RCA samples were tested for their leaching characteristics. Leaching tests were conducted according to Korean Standard Leaching Test (KLT) and Toxicity Characteristics Leaching Procedure (TCLP) respectively. The RCA samples were characterized using X-ray fluorescence (XRF). Alkalinity of the leachate was determined using a pH meter titration method. The XRF analysis result shows that the calcium oxide (CaO) content in the RCA sample is 25.3~50.4 %. When the RCA sample was mixed with water in a batch reactor, pH in the solution was rapidly increased, and 70% of the total pH change was found in 1 hour. The TCLP showed slightly higher efficiency for leaching heavy metals than the KLT. The leaching efficiency was also higher as the particle size of RCA sample was smaller. The leaching test results suggest that RCA can be generally classified as nonhazardous waste.

Effect of Recycled Aggregate Substitution to Zero-cement Concrete which uses Blast Furnace Slag Power (고로슬래그 미분말 사용 무 시멘트 콘크리트의 품질에 미치는 순환골재 치환율의 영향)

  • Feng, Hai-Dong;Cho, Man-Gi;Son, Ho-Jung;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.287-288
    • /
    • 2012
  • In this study, Analyzed the effect of the change in RFA and RCA substitution rate on the concrete containing BS bonding materials but no cement. The findings are as follows. First, the fresh concrete has less slump value and air contents as more RFA and RCA is used. In case of hardened concrete, as more RFA and RCA are used, the higher the compressive strength of concrete becomes. Especially, the compressive strength of concrete which used recycled aggregates only is found to be 2.2 times as high as that of concrete using natural fine and coarse aggregates only. But if the concrete is to be used as the structural concrete having the compressive strength of 13.8 MPa, the alkaline materials and some cement are required to be added.

  • PDF

Measurement for Coefficient of Thermal Expansion of Concretes Made with Recycled Concrete Aggregates (재생골재를 함유한 콘크리트의 열팽창계수 측정)

  • Yang, Sung Chul;Lee, Hwal Ung;Kim, Namho
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.7-16
    • /
    • 2015
  • PURPOSES : This study was performed to determine a systematic approach for measuring the coefficient of thermal expansion (COTE) of concrete specimens. This approach includes the initial calibration of measurement equipment. Test variables include coarse aggregate types such as natural aggregate, job-site produced recycled concrete aggregate, and recycled aggregate processed from an intermediate waste treatment company. METHODS : First, two cylindrical SUS-304 specimens with a known COTE value of $17.3{\times}10^{-6}m/m/^{\circ}C$. were used as reference specimens for the calibration of each measurement system. The well-known AASHTO TP-60 COTE apparatus for concrete measurement was utilized in this study. Four different measurement apparatuses were used with each LVDT installed and a calibration value was determined using each measurement apparatus. RESULTS : In the initial experimental stage, calibration values for each measurement apparatus were assumed to be almost identical. However, using the SUS-304 samples as a reference, the calibration values for the four different measurement apparatuses were found to range from 3.49 to $8.86{\times}10^{-6}m/m/^{\circ}C$. Using different adjusted values for each measurement apparatuses, COTE values for the three different concrete specimens were obtained. The COTE value of concrete made with natural coarse aggregate was $9.91{\times}10^{-6}m/m/^{\circ}C$, that of job-site produced recycled coarse aggregate was $10.45{\times}10^{-6}m/m/^{\circ}C$, and that of recycled aggregate processed from the intermediate waste treatment company was $10.82{\times}10^{-6}m/m/^{\circ}C$. CONCLUSIONS : We observed that the COTE value of concrete made from recycled concrete aggregates (RCA) was higher than that of concrete made from natural coarse aggregate. This difference is due to the fact that the total volumetric mortar proportion in the RCA mix is higher than that in the concrete mix made with natural coarse aggregate.

Chloride Diffusivity of Concrete using Recycled Aggregate by Strength Levels (강도수준별 순환골재 콘크리트의 염화물 확산특성)

  • Lee, Jun;Lee, Bong-Chun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.102-109
    • /
    • 2016
  • This paper presents mechanical properties and chloride diffusivity of the recycled aggregate concretes(RAC) in which natural coarse aggregate was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Engineering properties of RAC were tested for slump test, air content, compressive strength, chloride penetration depth and chloride diffusion coefficient. The test results indicated that the workability of RAC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. Furthermore, the result indicated that the measured chloride diffusion coefficient increases by 144% with the increase of the RCA replacement. In the case of the concrete having low level compressive strength, the increase of chloride diffusion coefficient tends to be higher when using the RCA. However, the trend of chloride diffusion coefficient in high level compressive strength concrete is similar to that obtained in general concrete. This is because that the effect of the RCA replacement could be a decrease with increase of compressive strength. Therefore, an advance on the admixture application and mix ratio control are required to improve the chloride resistivity when using the recycled aggregate in large scale.

Successive recycled coarse aggregate effect on mechanical behavior and microstructural characteristics of concrete

  • Ashish, Deepankar K.;Saini, Preeti
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • With the increase in industrialization and urbanization, growing demand has enhanced rate of new constructions and old demolitions. To avoid serious environmental impacts and hazards recycled concrete aggregates (RCA) is being adopted in all over the world. This paper investigates successive recycled coarse aggregates (SRCA) in which old concrete made with RCA in form of concrete cubes was used. The cubes were crushed to prepare new concrete using aggregates from crushing of old concrete, used as SRCA. The mechanical behavior of concrete was determined containing SRCA; the properties of SRCA were evaluated and then compared with natural aggregates (NA). Replacement of NA with SRCA in ratio upto 100% by weight was studied for workability, mechanical properties and microstructural analysis. It was observed that with the increase in replacement ratio workability and compressive strength decreased but in acceptable limits so SRCA can be used in low strength concretes rather than high strength concrete structures.

A Basic Study for evaluation on the Elastic Modulus of Recycled Aggregate Concrete by using Composite Model (복합이론에 의한 순환골재 콘크리트의 탄성계수 평가에 관한 기초적 연구)

  • Kim, Hyun-Wook;Kim, Ji-Yoon;Kim, Wan-ki;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.73-74
    • /
    • 2012
  • The elastic modulus of recycled aggregate concrete (RAC) can be evaluated by using composite models with experiment. In this study, Hashin's composite model was adapted to evaluate elastic modulus considering physical properties of recycled coarse aggregate (RCA) that mortar is attached. Elastic modulus testes for cement paste, mortar and recycled coarse aggregate concrete were carried out considering W/C and recycled coarse aggregate content rate. As a result, the elastic modulus of RAC was evaluated comparing with both experiment results and the existing estimation formula. Those can be used for further studies as a preliminary data.

  • PDF

Residual behavior of recycled aggregate concrete beam and column after elevated temperatures

  • Chen, Zongping;Zhou, Ji;Liang, Ying;Ye, Peihuan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.513-528
    • /
    • 2020
  • This paper presents the results of an experimental study on the residual behavior of reinforced recycled aggregate concrete (RRAC) beam-columns after exposure to elevated temperatures. Two parameters were considered in this test: (a) recycled coarse aggregate (RCA) replacement percentages (i.e. 0, 30, 50, 70 and 100%); (b) high temperatures (i.e. 20, 200, 400, 600, and 800℃). A total of 25 RRAC short columns and 32 RRAC beams were conducted and subjected to different high temperatures for 1 h. After cooling down to ambient temperature, the following basic physical and mechanical properties were then tested and discussed: (a) surface change and mass loss ratio; (b) strength of recycled aggregate concrete (RAC) and steel subjected to elevated temperatures; (c) bearing capacity of beam-columns; (d) load-deformation curve. According to the test results, the law of performance degradation of RRAC beam-columns after exposure to high temperatures is analyzed. Finally, introducing the influence coefficient of RCA replacement percentage and high temperatures, respectively, to correct the calculation formulas of bearing capacity of beam-columns in Chinese Standard, and then the residual bearing capacity of RRAC beam-columns subjected elevated temperatures is calculated according to the modified formulas, the calculated results are in good agreement with the experimental results.