• Title/Summary/Keyword: recycle water

Search Result 245, Processing Time 0.029 seconds

A Study on the Optical Internal Recycle Rate and MLSS Concentration of Membrane Coupled $A_2O$ Process for Wastewater Treatment (하수처리를 위한 막결합형 $A_2O$공정에서 최적 내부 순환율 및 MLSS 농도에 관한 연구)

  • Kim Kwan-Yeop;Kim Jin-Mo;Kim Hyung-Soo;Lee Sang-Bek;Park Eugene;Bae Sung-Soo
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.114-120
    • /
    • 2005
  • The purpose of this study is to obtain practical information about membrane coupled $ A_2O$ system for muncipal wastewater treatment. A flat-plate microfiltration (MF) module with a pore size $0.25\;{\mu}m$ was submerged into the aeration basin and treated water was filtrated through the membrane by continuous suction with low pressure. The system was operated with synthetic wastewater to find operational parameters of internal recycle ratio and maximum MLSS showing best water quality and long-term stability. The internal recycle was defined as type 1 for aerobic to anoxic tank and type 2 for anoxic to anaerobic tank, respectively When the flux was maintained at $0.015\;m^3/m^2/hr$ (15 LMH) with 2Q type 1 internal recycle ratio, the optimal operational setting were 10 internal recycle ratio for type 2 and maximum MLSS of 11,000 mg/L among tested conditions. At this condition, removal efficiencies of BOD, CODcr, T-N and T-P showed $97.3\%,\;94.2\%,\;64.0\%,\;63.0\%$, respectively.

Life Cycle Assessment for the Business Activities of Green Company -2. Mass Balance and Environmental Improvement (녹색기업의 사업활동 전 과정에 대한 환경성 평가 -2. 물질수지 및 환경개선)

  • Shin, Choon-Hwan;Park, Do-Hyun
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.425-433
    • /
    • 2013
  • A mass balance of process was calculated by using the analysis of basic unit and environmental assessment of all the processes of Busan fashion color industry cooperative that operates a combined heat and power plant and a bio treatment plant. The mass balance for the combined heat and power plant was done, based on boiler and water treatment processes while each unit reactor was used for the bio treatment plant. From the results above, a resource recycle network, a treatment flowchart for food waste water/wastewater treatment and a carbon reduction program were established.

GPS-X Based Modeling on the Process of Gang-byeon Sewage Treatment Plant and Design of Recycle Water Treatment Process (GPS-X 기반 모델링에 의한 강변사업소 처리효율 분석 및 반류수 처리 공정 설계)

  • Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1493-1498
    • /
    • 2016
  • The efficiencies of Gang-Byeon sewage treatment facilities, which are based on GPS-X modelling, were analysed and used to design recycle water treatment processes. The effluent of an aeration tank contained total kjeldahl nitrogen (TKN) of 1.8 mg/L with both C-1 and C-2 conditions, confirming that most ammonia nitrogen ($NH_3{^+}-N$) was converted to nitrate nitrogen ($NO_3{^-}-N$). The concentrations of $NH_3{^+}-N$ and $NO_3{^-}-N$ were found to be 222.5 and 227.2 mg/L, respectively, with C-1 conditions and 212.2 and 80.4 mg/L with C-2 conditions. Although C-2 conditions with higher organic matter yielded a slightly higher nitrogen removal efficiency, sufficient denitrification was not observed to meet the discharge standards. For the total nitrogen (T-N) removal efficiency, the final effluent concentrations of T-N were 293.8 mg/L with biochemical oxygen demand (BOD) of 2,500 mg/L, being about 1.5 times lower than that (445.3 mg/L) with BOD of 2,000 mg/L. Therefore, an external carbon source to increase the C/N ratio was required to get sufficient denitrification. During the winter period with temperature less than $10^{\circ}C$, the denitrification efficiency was dropped rapidly even with a high TKN concentration (1,500 mg/L). This indicates that unit reactors (anoxic/aerobic tanks) for winter need to be installed to increase the hydraulic retention time. Thus, to enhance nitrification and denitrification efficiencies, flexible operations with seasons are recommended for nitrification/anoxic/denitrification tanks.

Collision Efficiency Estimation in the DAF Contact Zone using Computational Fluid Dynamics (전산유체 기법을 이용한 용존공기부상법에서의 접촉도 조건변화에 따른 충돌효율평가)

  • Kim, Sung-Hoon;Yoo, Je-Seon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.201-207
    • /
    • 2004
  • Dissolved air flotation (DAF) is a solid-liquid separation process that uses fine rising bubbles to remove particles in water. Most of particle-bubble collision occurs in the DAF contact zone. This initial contact considered by the researchers to play a important role for DAF performance. It is hard to make up conceptual model through simple mass balance for estimating collision efficiency in the contact zone because coupled behavior of the solid-liquid-gas phase in DAF system is 90 complicate. In this study, 2-phase(gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. For the modeling of turbulent 2-phase flow in the reactor, the standard $k-{\varepsilon}$ mode I(liquid phase) and zero-equation(gas phase) were used in CFD code because it is widely accepted and the coefficients for the model are well established. Particle-bubble collision efficiency was calculated using predicted turbulent energy dissipation rate and gas volume fraction. As the result of this study, the authors concluded that bubble size and recycle ratio play important role for flow pattern change in the reactor. Predicted collision efficiency using CFD showed good agreement with measured removal efficiency in the contact zone. Also, simulation results indicated that collision efficiency at 15% recycle ratio is higher than that of 10% and showed increasing tendency of the collision efficiency according to the decrease of the bubble size.

Environmental Impact Evaluation for Glass Bottle Recycle using Life Cycle Assessment (LCA를 이용한 유리병 재활용의 환경영향 평가)

  • Baek, Seung-Hyuk;Kim, Hyung-Jin;Kwon, Young-Shik
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1067-1074
    • /
    • 2014
  • Life Cycle Assessment(LCA) has been carried out to evaluate the environmental impacts of glass bottle recycle. The LCA consists of four stages such as Goal and Scope Definition, Life Cycle Inventory(LCI) Analysis, Life Cycle Impact Assessment(LCIA), and Interpretation. The LCI analysis showed that the major input materials were water, materials, sand, and crude oil, whereas the major output ones were wastewater, $CO_2$, and non-hazardous wastes. The LCIA was conducted for the six impact categories including 'Abiotic Resource Depletion', 'Acidification', 'Eutrophication', 'Global Warming', 'Ozone Depletion', and 'Photochemical Oxidant Creation'. As for Abiotic Resource Depletion, Acidification, and Photochemical Oxidant Creation, Bunker fuel oil C and LNG were major effects. As for Eutrophication, electricity and Bunker fuel oil C were major effects. As for Global Warming, electricity and LNG were major effects. As for Ozone Depletion, plate glasses were major effects. Among the six categories, the biggest impact potential was found to be Global Warming as 97% of total, but the rest could be negligible.

Ceramics Body Development Using Waste Whiteware (백자 파도자기를 활용한 도자기 소지 개발)

  • Lee, Jea-Il;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.626-634
    • /
    • 2006
  • Ceramics manufacturers in the nation produced more than 5000 tons of ceramics wastes a year increasing industrial waste quantity: However, almost no researches were made to reduce environmental pollution and to recycle waste ware. In this study, white ware scraps that were produced at Icheon, Gyeonggi-do were recycled to make use of them as raw materials of ceramics body and to develop new ceramics body that had economic advantages and good quality. The findings showed that the addition of waste ware had limit of 20 wt% considering molding. The addition of waste ware of 20 wt% to white ware lowered baking temperature of the white ware that was added by waste ware of 20 wt% by 30$^{\circ}C$ than existing white ware, and property values were good, for instance, porosity of 3% in average and water absorptivity of 2% in average, and the bending strength recorded more than 800 kgf/$cm^2$ to be high than that of existing white ware being sold in market. The waste ware could be used to produce new ware body and to recycle resources and to solve environmental problems caused by burial and to improve property of ceramics and to save transportation costs as well as baking costs.

Recycle Possibility of the Stone-Dust in Quarry as Subbase Layer Materials of the Road (도로 보조기층재로서 채석장 석분토의 재활용가능성 분석)

  • Kim, Kyeong-Su;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.279-287
    • /
    • 2007
  • An ore of stone obtained from quarry lose its about 60% such as the muck and the stone-dust during the process of making the architectural block, the crushed aggregate and so on. A part of the muck is only reutilized for the crushed aggregate as road pavement materials, while the most of the muck in the shape of powder is mixed with water and then it is deposited in a sludge tank. The muck in the shape of powder is called the stone-dust. If the stone-dust is discharged and sprayed, an ecosystem will have terrible damage because the seepage of surface water, the flow of ground water and the movement of air are not occurred smoothly by packing the void of soils. As the Waste Management Law (2003) in Korea, the stone-dust is sorted out the industrial waste and the most of that is dumped in ground. Therefore, the establishments of an efficient recycling plan are necessary through the improvement of engineering properties of the stone-dust. To investigate the possibility of recycle and improvement for the stone-dust, the stone-dust and natural soils are sampled from six quarries in Korea. The various soil tests are performed by use of the mixed soils with the stone-dust content ratio. As the result of various soil tests, the recycle possibility of the stone-dust is analyzed as subbase layer materials of the roads.

The Effect of Mass Transfer on the Cure Properties of the Urea Resin Moulding Compounds Under the Drying Process (건조 공정 중 요소 수지 성형재료의 경화 특성에 대한 물질전달 효과)

  • Kim, Sang Yeul;Choi, Il Gon;Kim, Byoung Chul
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.681-686
    • /
    • 2002
  • In the industrial field, the theory of drying process is different from the practical application, and it is effective to reduce energy by recirculation of the heat of exhausting gas. But the study of this field may not be performed still. The cure properties of the urea resin moulding compounds was investigated according to drying temperature, drying time, recycle rate of exhausting gas and moulding temperature in the process of drying and moulding. We obtained the following results; water content of material decreases with increasing drying time and drying temperature, and the rate of drying also decreases with increasing recycle rate of exhausting gas. Specially, The cure fluidity of the urea resin moulding compounds decreases, with increasing drying temperature, recycle rate of exhausting gas and moulding temperature. And the correlation equations on water content and cure fluidity of the urea resin moulding material were obtained through a regression analysis of experimental data.

Apple Water-Footprint Calculation and Water Risk Action (사과의 지역별 물발자국 비교와 물 리스크 대응 -충주와 거창 지역을 중심으로-)

  • Oh, Young-Jin;Park, Seog-Ha;Kim, Hong-Jae;Kim, Chesoong
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • According to 2012 OECD environmental report, Korea was ranked as the first country of water stress. Water footprint is a method to calculate water usage during the life cycle of a product from material procurement through production to disposal to recycle and to quantify the load to water resources. In water footprint calculation, water consumption unit is used. Agricultural water use is over 48% so it is urgent to mange that area Korea needs to spread the discussion about water footprint as quickly as possible, for the study to prevent social and environmental problems due to water shortage. This paper, through water footprint calculation and comparison in Chungju and Geochang areas, looks to counter measures for water risk, targeting domestically-produced apple.