• Title/Summary/Keyword: recursive

Search Result 1,608, Processing Time 0.024 seconds

Classification of Piperazinylalkylisoxazole Library by Recursive Partitioning

  • Kim, Hye-Jung;Park, Woo-Kyu;Cho, Yong-Seo;No, Kyoung-Tai;Koh, Hun-Yeong;Choo, Hyun-Ah;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.111-116
    • /
    • 2008
  • A piperazinylalkylisoxazole library containing 86 compounds was constructed and evaluated for the binding affinities to dopamine (D3) and serotonin (5-HT2A/2C) receptor to develop antipsychotics. Dopamine antagonists (DA) showing selectivity for D3 receptor over the D2 receptor, serotonin antagonists (SA), and serotonin-dopamine dual antagonists (SDA) were identified based on their binding affinity and selectivity. The analogues were divided into three groups of 7 DAs (D3), 33 SAs (5-HT2A/2C), and 46 SDAs (D3 and 5-HT2A/2C). A classification model was generated for identifying structural characteristics of those antagonists with different affinity profiles. On the basis of the results from our previous study, we conducted the generation of the decision trees by the recursive-partitioning (RP) method using Cerius2 2D descriptors, and identified and interpreted the descriptors that discriminate in-house antipsychotic compounds.

Low Complexity MMSE with Successive Interference Cancellation for OFDM Systems over Time-selective Channels (시변 채널 환경에서 OFDM 시스템을 위한 복잡도가 감소된 MMSE-SIC 등화기법)

  • Park, Ji-Hyun;Hwang, Seung-Hoon;Whang, Keum-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.743-750
    • /
    • 2008
  • Orthogonal frequency division multiplexing (OFDM) is a attractive modulation scheme for high data rate transmission in frequency-selective channels. However, the time selectivity of wireless channel introduces intercarrier interference (ICI), and consequently degrades system performance. In this paper, we first propose a novel recursive algorithm for minimum mean squared error (MMSE) with successive interference cancellation (SIC). The proposed algorithm can significantly reduce the complexity of the MMSE-SIC scheme and achieve the same performance when optimal ordering is known. Also, the further reduced scheme of the proposed algorithm can be developed based on ICI properties, while preserving performance.

Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System (온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어)

  • 윤기후;곽근창
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.414-422
    • /
    • 2002
  • In this paper, we propose a new method of adaptive neuro-fuzzy control using CFCM(Conditional Fuzzy c-means) clustering and fuzzy equalization method to deal with adaptive control problem. First, in the off-line design, CFCM clustering performs structure identification of adaptive neuro-fuzzy control with the homogeneous properties of the given input and output data. The parameter identification are established by hybrid learning using back-propagation algorithm and RLSE(Recursive Least Square Estimate). In the on-line design, the premise and consequent parameters are tuned to RLSE with forgetting factor due to a characteristic of time variant. Finally, we applied the proposed method to the water temperature control system and obtained better results than previous works such as fuzzy control.

Optimal design of hybrid laminated composite plates (혼합 적층 복합 재료판의 최적설계)

  • 이영신;이열화;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1391-1407
    • /
    • 1990
  • In this paper, optimization procedures are presented considering the static and dynamic constraints for laminated composite plate and hybrid laminated composite plate subject to concentrated load on center of the plates. Design variables for this problem are ply angle or ply thickness. Deflection, natural frequency and specific damping capacity are considered as constraints. Using a recursive linear programming method, the nonlinear optimization problems are solved. By introducing the design scaling factor, the number of iterations is reduced significantly. Composite plates could be designed optimally combined with FEM analysis under various conditions. In the optimization procedure, verification for both analysis and design of the laminated composite plates are compared with the results of the others. Various design results are presented for the laminated composite plates and hybrid laminated composite plates.

Real-time Dynamic Simulation Using Multibody Vehicle Model (다물체 차량모델을 이용한 실시간 동역학 시뮬레이션)

  • Choe, Gyu-Jae;No, Gi-Han;Yu, Yeong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.486-494
    • /
    • 2001
  • This paper presents a real-time multibody vehicle dynamic analysis method using recursive Kanes formulation and suspension composite joints. To shorten the computation time of simulation, relative coordinate system is used and the equations of motion are derived using recursive Kanes formulation. Typical suspension systems of vehicles such as MacPherson strut suspension system is modeled by suspension composite joints. The joints are derived and utilized to reduce the computation time of simulation without any degradation of kinematical accuracy of the suspension systems. Using the develop program, a multibody vehicle dynamic model is formed and simulations are performed. Accuracy of the simulation results is compared to the real vehicle field test results. It is found that the simulation results using the proposed method are very accurate and real-time simulation is achieved on a computer with single PowerPC 604 processor.

Recursive compensation algorithm application to the optimal edge selection

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.79-84
    • /
    • 1992
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the optimal collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy and a traveling salesman problem strategy (TSP). The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Hopfield Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is used to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm.

  • PDF

Active Control of Noise in Ducts Using Stabilized Multi-Channel Recursive LMS Algorithms (안정화된 다중채널 RLMS 알고리즘을 이용한 덕트의 능동소음제어)

  • Nam, Hyun-Do;Nam, Seung-Uk;Seo, Sung-Dae;Ahn, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.30-32
    • /
    • 2006
  • An adaptive IIR filter in ANC(Active Noise Control) systems is more effective than an adaptive FIR filter when acoustic feedback exists, in which cause an order of an adaptive FIR filter must be very large if some of poles of the ideal control filter are near the unit circle. But the IIR filters may have stability problems especially when the adaptive algorithm for adaptive filters is not yet converged. In this paper, a stabilized multi-channel recursive LMS (MCRLMS) algorithm for an adaptive multi-channel IIR filter is presented. RLMS algorithms usually diverge before the algorithm is not yet converged. So, in the beginning of the ANC system, the stability of the RLMS algorithms could be Improved by pulling the poles of the IIR filter to the center of the unit circle, and returning the poles to their original positions after the filter converges. Computer simulations and experiments for dipole ducts using a TMS320C32 digital signal processor have performed to show the effectiveness of a proposed algorithm.

  • PDF

Capacitive Parameter Estimation of Passive Telemetry RF Sensor System Using RLS Algorithm (RLS 알고리즘을 이용한 원격 RF 센서 시스템의 정전용량 파라메타 추정)

  • Kim, Kyung-Yup;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.858-865
    • /
    • 2008
  • In this paper, Capacitive Telemetry RF Sensor System using Recursive Least Square (RLS) algorithm was proposed. General Telemetry RF Sensor System means that it should be "wireless", "implantable" and "batterless". Conventional Telemetry RF Sensor System adopts Integrated Circuit type, but there are many defects like complexity of structure and the limitation of large power consumption in some cases. In order to overcome these disadvantages, Telemetry RF Sensor System based on inductive coupling principle was proposed in this paper. Proposed Telemetry RF Sensor System is very simple because it consists of R, L and C and measures the changes of environment like pressure and humidity in the type of capacitive value. This system adopted RLS algorithm for estimation of this capacitive parameter. For the purpose of applying RLS algorithm, proposed system was mathematically modelled with phasor method and was quasi-linearized. As two parameters such as phase and amplitude of output voltage for estimation were needed, Phase Difference Detector and Amplitude Detector were proposed respectively which were implemented using TMS320C2812 made by Texas Instrument. Finally, It is verified that the capacitance of proposed telemetry RF Sensor System using RLS algorithm can be estimated efficiently under noisy environment.

Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction

  • Erdogan, Yildirim S.;Catbas, Necati F.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The vehicle-bridge interaction (VBI) analysis might be cumbersome and computationally expensive in bridge engineering due to the necessity of solving large number of coupled system of equations. However, VBI analysis can provide valuable insights into the dynamic behavior of highway bridges under specific loading conditions. Hence, this paper presents a numerical study on the dynamic behavior of a conventional highway bridge under strong near-field and far-field earthquake motions considering the VBI effects. A recursive substructuring method, which enables solving bridge and vehicle equations of motion separately and suitable to be adapted to general purpose finite element softwares, was used. A thorough analysis that provides valuable information about the effect of various traffic conditions, vehicle velocity, road roughness and effect of soil conditions under far-field and near-field strong earthquake motions has been presented. A real-life concrete highway bridge was chosen for numerical demonstrations. In addition, sprung mass models of vehicles consist of conventional truck and car models were created using physical and dynamic properties adopted from literature. Various scenarios, of which the results may help to highlight the different aspects of the dynamic response of concrete highway bridges under strong earthquakes, have been considered.

Simulation and Experimental Methods for Media Transport System: Part I, Three-Dimensional Sheet Modeling Using Relative Coordinate

  • Cho, Heui-Je;Bae, Dea-Sung;Choi, Jin-Hwan;Lee, Soon-Geul;Rhim, Sung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.305-311
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.