• Title/Summary/Keyword: recurrence relations

Search Result 101, Processing Time 0.02 seconds

A NEW FAMILY OF FUBINI TYPE NUMBERS AND POLYNOMIALS ASSOCIATED WITH APOSTOL-BERNOULLI NUMBERS AND POLYNOMIALS

  • Kilar, Neslihan;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1605-1621
    • /
    • 2017
  • The purpose of this paper is to construct a new family of the special numbers which are related to the Fubini type numbers and the other well-known special numbers such as the Apostol-Bernoulli numbers, the Frobenius-Euler numbers and the Stirling numbers. We investigate some fundamental properties of these numbers and polynomials. By using generating functions and their functional equations, we derive various formulas and relations related to these numbers and polynomials. In order to compute the values of these numbers and polynomials, we give their recurrence relations. We give combinatorial sums including the Fubini type numbers and the others. Moreover, we give remarks and observation on these numbers and polynomials.

ON HIGHER ORDER (p, q)-FROBENIUS-GENOCCHI NUMBERS AND POLYNOMIALS

  • KHAN, WASEEM A.;KHAN, IDREES A.;KANG, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.295-305
    • /
    • 2019
  • In the present paper, we introduce (p, q)-Frobenius-Genocchi numbers and polynomials and investigate some basic identities and properties for these polynomials and numbers including addition theorems, difference equations, derivative properties, recurrence relations and so on. Then, we provide integral representations, implicit and explicit formulas and relations for these polynomials and numbers. We consider some relationships for (p, q)-Frobenius-Genocchi polynomials of order ${\alpha}$ associated with (p, q)-Bernoulli polynomials, (p, q)-Euler polynomials and (p, q)-Genocchi polynomials.

ON GENERALIZED EXTENDED BETA AND HYPERGEOMETRIC FUNCTIONS

  • Shoukat Ali;Naresh Kumar Regar;Subrat Parida
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.313-334
    • /
    • 2024
  • In the current study, our aim is to define new generalized extended beta and hypergeometric types of functions. Next, we methodically determine several integral representations, Mellin transforms, summation formulas, and recurrence relations. Moreover, we provide log-convexity, Turán type inequality for the generalized extended beta function and differentiation formulas, transformation formulas, differential and difference relations for the generalized extended hypergeometric type functions. Also, we additionally suggest a generating function. Further, we provide the generalized extended beta distribution by making use of the generalized extended beta function as an application to statistics and obtaining variance, coefficient of variation, moment generating function, characteristic function, cumulative distribution function, and cumulative distribution function's complement.

ON THE ALGEBRA OF 3-DIMENSIONAL ES-MANIFOLD

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.207-216
    • /
    • 2014
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to study the algebraic geometric structures of 3-dimensional $^*g-ESX_3$. Particularly, in 3-dimensional $^*g-ESX_3$, we derive a new set of powerful recurrence relations in the first class.

VOLUME OF GRAPH POLYTOPES FOR THE PATH-STAR TYPE GRAPHS

  • Ju, Hyeong-Kwan;Seo, Soo-Jeong
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.71-84
    • /
    • 2016
  • The aim of this work is to compute the volume of the graph polytope associated with various type of finite simple graphs composed of paths and stars. Recurrence relations are obtained using the recursive volume formula (RVF) which was introduced in Lee and Ju ([3]). We also discussed the relationship between the volume of the graph polytopes and the number of linear extensions of the associated posets for given bipartite graphs.

A NEW CLASS OF q-HERMITE-BASED APOSTOL TYPE FROBENIUS GENOCCHI POLYNOMIALS

  • Kang, Jung Yoog;Khan, Waseem A.
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.759-771
    • /
    • 2020
  • In this article, a hybrid class of the q-Hermite based Apostol type Frobenius-Genocchi polynomials is introduced by means of generating function and series representation. Several important formulas and recurrence relations for these polynomials are derived via different generating function methods. Furthermore, we consider some relationships for q-Hermite based Apostol type Frobenius-Genocchi polynomials of order α associated with q-Apostol Bernoulli polynomials, q-Apostol Euler polynomials and q-Apostol Genocchi polynomials.

EINSTEIN'S CONNECTION IN 5-DIMENSIONAL ES-MANIFOLD

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.127-135
    • /
    • 2017
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 5-dimensional $^*g-ESX_5$ and to display a surveyable tnesorial representation of 5-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations in the first class.

GENERALIZATION OF EXTENDED BETA FUNCTION, HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Lee, Dong-Myung;Rathie, Arjun K.;Parmar, Rakesh K.;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.187-206
    • /
    • 2011
  • The main object of this paper is to present generalization of extended beta function, extended hypergeometric and confluent hypergeometric function introduced by Chaudhry et al. and obtained various integral representations, properties of beta function, Mellin transform, beta distribution, differentiation formulas transform formulas, recurrence relations, summation formula for these new generalization.

LINEAR EXTENSIONS OF DIAMOND POSETS

  • Ju, Hyeong-Kwan;Seo, Seunghyun
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.863-870
    • /
    • 2019
  • In this paper, we obtain the enumeration results on the number of linear extensions of diamond posets. We find the recurrence relations and exponential generating functions for the number of linear extensions of diamond posets. We also get some results for the volume of graph polytope associated with bipartite graphs which are underlying graphs of diamond posets.

EINSTEIN'S CONNECTION IN 3-DIMENSIONAL ES-MANIFOLD

  • HWANG, IN HO
    • Korean Journal of Mathematics
    • /
    • v.23 no.2
    • /
    • pp.313-321
    • /
    • 2015
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 3-dimensional $^*g-ESX_3$ and to display a surveyable tnesorial representation of 3-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations in the first class.