• Title/Summary/Keyword: recommendation algorithm

Search Result 417, Processing Time 0.029 seconds

Performance of Collaborative Filtering Agent System using Clustering for Better Recommendations (개선된 추천을 위해 클러스터링을 이용한 협동적 필터링 에이전트 시스템의 성능)

  • Hwang, Byeong-Yeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5S
    • /
    • pp.1599-1608
    • /
    • 2000
  • Automated collaborative filtering is on the verge of becoming a popular technique to reduce overloaded information as well as to solve the problems that content-based information filtering systems cannot handle. In this paper, we describe three different algorithms that perform collaborative filtering: GroupLens that is th traditional technique; Best N, the modified one; and an algorithm that uses clustering. Based on the exeprimental results using real data, the algorithm using clustering is compared with the existing representative collaborative filtering agent algorithms such as GroupLens and Best N. The experimental results indicate that the algorithms using clustering is similar to Best N and better than GroupLens for prediction accuracy. The results also demonstrate that the algorithm using clustering produces the best performance according to the standard deviation of error rate. This means that the algorithm using clustering gives the most stable and the best uniform recommendation. In addition, the algorithm using clustering reduces the time of recommendation.

  • PDF

A personalized exercise recommendation system using dimension reduction algorithms

  • Lee, Ha-Young;Jeong, Ok-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.19-28
    • /
    • 2021
  • Nowadays, interest in health care is increasing due to Coronavirus (COVID-19), and a lot of people are doing home training as there are more difficulties in using fitness centers and public facilities that are used together. In this paper, we propose a personalized exercise recommendation algorithm using personalized propensity information to provide more accurate and meaningful exercise recommendation to home training users. Thus, we classify the data according to the criteria for obesity with a k-nearest neighbor algorithm using personal information that can represent individuals, such as eating habits information and physical conditions. Furthermore, we differentiate the exercise dataset by the level of exercise activities. Based on the neighborhood information of each dataset, we provide personalized exercise recommendations to users through a dimensionality reduction algorithm (SVD) among model-based collaborative filtering methods. Therefore, we can solve the problem of data sparsity and scalability of memory-based collaborative filtering recommendation techniques and we verify the accuracy and performance of the proposed algorithms.

Sequence-Based Travel Route Recommendation Systems Using Deep Learning - A Case of Jeju Island - (딥러닝을 이용한 시퀀스 기반의 여행경로 추천시스템 -제주도 사례-)

  • Lee, Hee Jun;Lee, Won Sok;Choi, In Hyeok;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.45-50
    • /
    • 2020
  • With the development of deep learning, studies using artificial neural networks based on deep learning in recommendation systems are being actively conducted. Especially, the recommendation system based on RNN (Recurrent Neural Network) shows good performance because it considers the sequential characteristics of data. This study proposes a travel route recommendation system using GRU(Gated Recurrent Unit) and Session-based Parallel Mini-batch which are RNN-based algorithm. This study improved the recommendation performance through an ensemble of top1 and bpr(Bayesian personalized ranking) error functions. In addition, it was confirmed that the RNN-based recommendation system considering the sequential characteristics in the data makes a recommendation reflecting the meaning of the travel destination inherent in the travel route.

A Study on the Development of the School Library Book Recommendation System Using the Association Rule (연관규칙을 활용한 학교도서관 도서추천시스템 개발에 관한 연구)

  • Lim, Jeong-Hoon;Cho, Changje;Kim, Jongheon
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.1-22
    • /
    • 2022
  • The purpose of this study is to propose a book recommendation system that can be used in school libraries. The book recommendation system applies an algorithm based on association rules using DLS lending data and is designed to provide personalized book recommendation services to school library users. For this purpose, association rules based on the Apriori algorithm and betweenness centrality analysis were applied and detailed functions such as descriptive statistics, generation of association rules, student-centered recommendation, and book-centered recommendation were materialized. Subsequently, opinions on the use of the book recommendation system were investigated through in-depth interviews with teacher librarians. As a result of the investigation, opinions on the necessity and difficulty of book recommendation, student responses, differences from existing recommendation methods, utilization methods, and improvements were confirmed and based on this, the following discussions were proposed. First, it is necessary to provide long-term lending data to understand the characteristics of each school. Second, it is necessary to discuss the data integration plan by region or school characteristics. Third, It is necessary to establish a book recommendation system provided by the Comprehensive Support System for Reading Education. Based on the contents proposed in this study, it is expected that various discussions will be made on the application of a personalization recommendation system that can be used in the school library in the future.

Words Recommendation Algorithm for Similarity Connection based on Data Transmutability (데이터 변형성 기반 유사성 연결을 위한 단어 추천 알고리즘)

  • Kim, Boon-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1719-1724
    • /
    • 2013
  • Big data which requires a different approach from existing data processing methods, is unstructured data with a variety of features. The features mean the volume of data, the rate of change of the data, the data with a variety of features. Tweets of twitter in only Korea are more than 5 millions per day. So much cheaper data storage and analysis system due to the increasing demand for information, the value of research is increasing. In this paper, the technology required by the deformation characteristics of the data elements as a technology priority-based word-based recommendation algorithm is proposed.

Design of Recommendation Module for Customized Sport for All Contents (맞춤형 생활 스포츠 콘텐츠를 위한 추천 모듈 설계)

  • Choi, Gun-Hee;Yoo, MinJeong;Lee, Jae-Dong;Lee, Won-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.300-301
    • /
    • 2016
  • This paper proposes customized recommendation algorithm to improve the QoS(quality of service) of sport for all sports content uses to user profile and team grade. The proposed recommendation module is based on user profile information, and it recommends suitable team contents to user with Euclidean distance algorithm and preference weights between teams.

  • PDF

A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection

  • Yu, Hongtao;Sun, Lijun;Zhang, Fuzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4684-4705
    • /
    • 2019
  • Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.

Collaborative filtering-based recommendation algorithm research (협업 필터링 기반 추천 알고리즘 연구)

  • Lee, Hyun-Chang;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.655-656
    • /
    • 2022
  • Among the analysis methods for a recommendation system, collaborative filtering is a major representative method in a recommendation system based on data analysis. A general usage method is a technique of finding a common pattern by using evaluation data of users for various items, and recommending a preferred item for a specific user. Therefore, in this paper, various algorithms were used to measure the index, and an algorithm suitable for prediction of user preference was found and presented.

  • PDF

Development of a Personalized Music Recommendation System Using MBTI Personality Types and KNN Algorithm

  • Chun-Ok Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2024
  • This study aims to develop a personalized music digital therapeutic based on MBTI personality types and apply it to depression treatment. In the data collection stage, participants' MBTI personality types and music preferences were surveyed to build a database, which was then preprocessed as input data for the KNN model. The KNN model calculates the distance between personality types using Euclidean distance and recommends music suitable for the user's MBTI type based on the nearest K neighbors' data. The developed system was tested with new participants, and the system and algorithm were improved based on user feedback. In the final validation stage, the system's effectiveness in alleviating depression was evaluated. The results showed that the MBTI personality type-based music recommendation system provides a personalized music therapy experience, positively impacting emotional stability and stress reduction. This study suggests the potential of nonpharmacological treatments and demonstrates that a personalized treatment experience can offer more effective and safer methods for treating depression.

User's Individuality Preference Recommendation System using Improved k-means Algorithm (개선된 k-means 알고리즘을 적용한 사용자 특성 선호도 추천 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.141-148
    • /
    • 2010
  • In mobile terminal recommend service system has general information restrictive recommend that individuality considering to user's information find and recommend. Also it has difficult of accurate information recommend bad points user's not offer individuality information preference recommend service. Therefore this paper is propose user's information individuality preference considering by user's individuality preference recommendation system using improved k-means algorithm. Propose method is correlation coefficients using user's information individuality preference when user's individuality preference recommendation using improved k-means algorithm. Restrictive information recommend to fix a problem, information of restrictive general recommend that user's information individuality preference offer to accurate information recommend. Performance experiment is existing service system as compared to evaluating the effectiveness of precision and recall, performance experiment result is appear to precision 85%, recall 68%.