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Abstract 
 

Collaborative filtering recommender systems are vulnerable to shilling attacks in which 
malicious users may inject biased profiles to promote or demote a particular item being 
recommended. To tackle this problem, many robust collaborative recommendation methods 
have been presented. Unfortunately, the robustness of most methods is improved at the 
expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic 
matrix factorization model for collaborative filtering recommender systems by incorporating 
the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of 
users by the modified K-means algorithm and target item identification method to generate an 
indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to 
construct a robust Bayesian probabilistic matrix factorization model and based on which a 
robust collaborative recommendation algorithm is devised. The experimental results on the 
MovieLens and Netflix datasets show that our model can significantly improve the robustness 
and recommendation accuracy compared with three baseline methods. 
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1. Introduction 

Nowadays, recommender systems have been applied to solve the information overload 
problem in many areas such as online product recommendations in e-commerce websites [1], 
Web-page recommendations in intelligent Web systems [2], POI (Point of Interest) 
recommendations in location-based social networks [3], and cloud service recommendations 
in cloud computing market [4]. Collaborative filtering (CF) [5] is a commonly-used technique 
in recommender systems, which has been widely used in e-commerce sites such as Amazon 
and eBay. CF methods are categorized as memory- and model-based methods [6]. 
Memory-based methods include user- and item-based approaches, which make 
recommendations based on similarity between users or items. Model-based methods first train 
a model using the known ratings of users, then exploit the model to predict ratings for unrated 
items. 

Due to the open nature of CF-based systems, however, malicious users may bias the output 
of such systems by injecting fake profiles. This behavior has been known as shilling attacks or 
profile injection attacks [7], [8]. The fake profiles are called attack profiles or shilling profiles. 
Depending on the purpose of attacks, shilling attacks can be categorized into either push 
attacks (i.e., attacks that are designed to increase the probability of an item being 
recommended) or nuke attacks (i.e., attacks that are designed to decrease the probability of an 
item being recommended) [9]. The well-studied shilling attacks include random attack, 
average attack, and AoP (Average over Popular items) attack, etc [7], [8], [10]. These  attacks 
present a challenge to the credibility of CF-based systems. Therefore, how to guarantee the 
credibility of CF-based systems has become a problem that cannot be ignored. 

To reduce the impact of shilling attacks, many methods for detecting such attacks have been 
presented [11-16]. These detection methods mainly adopt binary classification to spot and 
filter shilling profiles, which are easy to filter out genuine profiles. An alternative way is to 
improve the robustness of recommendation algorithms. Robustness is the ability of a 
recommender system to make stable recommendations when its rating database is 
contaminated with noise data or malicious ratings [17], which has been investigated in the 
context of shilling attacks. Although a variety of robust CF algorithms have been presented, 
most of them improve robustness at the cost of decreasing accuracy. This is because the 
existing matrix factorization based robust recommendation methods need to discard outliers in 
parameter estimation, which may lead to the rejection of some genuine users' ratings, thus 
resulting in loss of accuracy. 

To address these problems, we present a robust Bayesian probabilistic matrix factorization 
(BPMF) model for CF systems based on user anomaly rating behavior detection. Particularly, 
we first use clustering technique and target item identification method to detect the anomaly 
rating users, then we combine the detection results with BPMF model to construct a robust CF 
model and devise a robust CF algorithm to make recommendations. 

The contributions of this paper are summarized below: 
1) We use the clustering algorithm and target item identification method to detect user 

anomaly rating behaviors, and based on which an indicator matrix of attack users is 
generated. 

2) We present a robust BPMF model by incorporating the indicator matrix of attack users 
and based on it a robust CF algorithm is devised. 
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3) We carry out experiments on different datasets and compare our model with other 
approaches. 

The rest of paper is organized as follows. Section 2 briefly introduces the research on robust 
recommendation algorithms. Section 3 describes the proposed model in detail. Experimental 
results are presented in Section 4. The conclusion and future work are given in Section 5. 

2. Related Work 
Research on robust recommendation methods has been conducted over the past decade and 
has achieved considerable results. Mehta et al. [18] proposed a M-estimator based matrix 
factorization algorithm (MMF). MMF can find outliers by monitoring whether the residual is 
in a certain range. Nevertheless, the reported results show that MMF is only effective for 
small-scale attacks. Cheng and Hurley [19] proposed a least trimmed squares estimator based 
matrix factorization algorithm (LTSMF), which performed better than MMF. However, the 
accuracy of LTSMF algorithm is limited because some genuine users’ ratings with the largest 
residuals are also discarded. Mehta and Nejdl [20] proposed a robust recommendation 
algorithm, i.e., VarSelect SVD. VarSelect SVD has been proved to be robust against shilling 
attacks, but it needs a prior knowledge of attack size. In [21], a robust recommendation 
method was proposed. This method first uses the relevance vector machine classifier to 
measure suspicious users, then mines the implicit trust between users according to their  
ratings, and incorporates the results of measurement to build a multidimensional trust model. 
By combining the trust model, neighbor model, and matrix factorization, a robust 
recommendation algorithm is finally developed. In [22], a robust CF method was proposed. It 
uses R1-norm to build a robust non-negative MF model, and based on it a robust CF algorithm 
is developed to make recommendations. 

Probabilistic matrix factorization (PMF) [23] is a special MF, which is applicable to large 
and sparse datasets. Liu et al. [24] presented a new PMF model, which improved prediction 
accuracy by combining user relations with rating matrix. Nevertheless, the prediction of this 
model is easily affected by malicious ratings. In [25], a BPMF-based recommendation model 
was proposed. This model introduces the prior distribution over the hyper-parameters on the 
basis of PMF to avoid over-fitting. It proves that BPMF is better than PMF in accuracy. In [26], 
a robust recommendation model is proposed, which improved the prediction accuracy and 
robustness by using the long tail distribution or excluding attack users. Li et al. [27] presented 
a metadata-enhanced variational Bayesian MF model for robust recommendation. It fuses the 
BPMF model with metadata, which can weaken the effect of malicious users on the model’s 
posterior, and thus guarantees the robustness of algorithm. 

In this work, we aim to build a robust CF model with strong attack-resistant capability and 
high recommendation accuracy. Unlike the methods in [18,19,22] that use the robust 
estimators or R1-norm to limit the impact of ratings with the largest residuals on the 
recommendation models, which are easy to discard genuine users' ratings with maxinum 
residuals, our model only filters ratings on the target item based on the detection results of 
anomaly rating users. Different from the approach in [20], our model does not require a prior 
knowledge of attack size. Unlike the approach in [21], our model uses an unsupervised 
clustering algorithm and target item identification method to detect anomaly rating users, 
which does not need to train the classification model. 
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3. The Proposed Model 
In this section, we first propose an approach for detecting anomaly rating users based on the 
modified K-means algorithm and target item identification method, then we combine the 
detection results with Bayesian probabilistic matrix factorization model to build a robust CF 
model and devise the corresponding robust CF algorithm which is called RBPMF-CF. 

3.1 Detecting Anomaly Rating Behavior of Users 
In the context of shilling attacks, the attack users usually give the highest rating for the item 
that they want to promote. This means the attack users generally have greater residual (i.e., the 
difference between a user’s real and predicted ratings) than that of genuine users. To illustrate 
the characteristic of ratings for the attack users, we randomly choose 144 genuine users from 
the Movielens 100K dataset, and inject attack profiles generated by average attack, random 
attack, and AoP attack, respectively. These attacks are all push attacks, the filler size and 
attack size are set to 3%, respectively. Based on these profiles, the mean residuals of genuine 
and attack users are calculated, respectively. Fig. 1 depicts the mean residuals of 228 users 
which include 144 genuine users, 28 AoP attack users, 28 average attack users, and 28 random 
attack users.  

As shown in Fig. 1, the mean residuals of attackers are greater than those of genuine users, 
which means the ratings given by the attackers are generally greater than those of most 
genuine users. It can be seen from Fig. 1, some mean residuals of AoP attackers are close to 
those of most genuine users. This is because AoP attack is the obfuscated form of average 
attack. Unlike average attack profiles, AoP attack profiles use a certain percentage of popular 
items as filler items, which makes them look like genuine ones. 

Due to the high similarity between attackers, we utilize a modified K-means algorithm to 
cluster anomaly rating users and further spot the attackers by the target item identification 
method. 
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Fig. 1. The mean residuals of user ratings 
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3.1.1  Clustering Anomaly Rating Users 
K-means is a conventional clustering algorithm, which splits a dataset samples into K clusters 
[28], [29]. This algorithm usually uses Euclidean distance as the metric to measure the 
similarity between two samples. The samples with high similarity are grouped into the same 
cluster, and the samples between clusters have low similarity. However, the K-means 
algorithm with Euclidean distance-based similarity measurement cannot well separate the 
attack users from genuine ones due to the high similarity between them. Hence, we present a 
similarity measurement metric to modify K-means algorithm in order to better group the 
attack users.  

Definition 1 popularity degree of item (PDI). The popularity degree of item i, PDI(i) is 
denoted by 

( ) ( )
u

ui
u

PDI i r
κ∈

= Γ∑                                                            (1) 

1 ,
( )

0 ,
ui

ui
ui

r
r

r
≠ ∅

Γ =  = ∅
                                                            (2) 

where rui denotes the rating of user u for item i, uκ  denotes the set of users, uir ≠ ∅  represents 
that user u rates on item i, uir = ∅  represents that user u does not rate on item i. 

Fig. 2 illustrates the difference of PDI between genuine and attack users. In Fig. 2, genuine 
users tend to rate the popular items, and the attack users rate all items with equal probability. 

 

       
(a) The PDI of genuine users                                     (b) The PDI of attack users 

Fig. 2. The difference of PDI between genuine and attack users. Note that abscissa represents the 
sequence numbers of items after sorting on PDI in descending order 

Definition 2 average rating popularity degree of user (APDU). The average rating 
popularity degree of user u, APDU(u), is defined as below: 

( )
( ) ui I

u

PDI i
APDU u

I
∈=
∑

                                                      (3) 

where Iu denotes the set of items rated by user u, | Iu | is the number of items in set Iu. 
Fig. 3 illustrates the average rating popularity degree of genuine and attack users. In Fig. 3, 

the APDU of attackers is less than that of the majority of genuine users. Therefore, it can be 
used as the basis of cluster center selection and similarity measurement. 
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Fig. 3.  APDU of users 

 
Definition 3 the distance between users (DIST). The distance between users u and v is 

defined as follows: 
( , ) ( ) ( )DIST u v APDU u APDU v= −                                (4) 

where APDU(u) and APDU(v) are average rating popularity degrees of users u and v, 
respectively. The greater the DIST(u,v), the larger the difference between users u and v. 

DIST(u,v) has two properties. One is symmetry, i.e., DIST(u,v)=DIST(v,u). The other is 
non-negativity, i.e., DIST(u, v)≥0. Therefore, it can be used for measuring the difference 
between users. 

To better group attack users, we utilize DIST(u,v) as similarity measurement metric of 
K-means algorithm and adjust the selection strategy of its cluster centers. The main steps for 
clustering anomaly rating users are as follows: 

Step 1. Initialize the cluster centers k1 and k2 by calculating ( )
uu

mean APDU u
κ∈

 and ( )
uu

min APDU u
κ∈

 

in user rating database. 
Step 2. For any user u uκ∈ , compute the distance between u and cluster centers by Eq. (4), 

and assign u to the nearest cluster. 
Step 3. Update the cluster centers k1 and k2 by calculating the mean and minimum value of 

APDU in each cluster. 
Step 4. Repeat steps 2 and 3 until k1 and k2 are no longer change, and obtain the cluster of 

anomaly rating users. 
According to the above steps, we design an algorithm to cluster anomaly rating users. 

 
Algorithm 1  clustering anomaly rating users 
Input: user rating matrix R 
Output: suspicious users cluster Cs 

1: 1S ←∅ , 2S ←∅ , 1 0sum ← , 2 0sum ←  
2: for each item i I∈ do    
3:  ( ) ( )

u
uiPDI i r

u κ
∑= Γ
∈

   

4: end for 
5: for each user u uκ∈  do 

6: ( ) ( ) /
i Iu

APDU u PDI i Iu∈
∑=  
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7: end for 
8:

1
( )f mean APDU= ,

2
min( )f APDU=  /*f1, f2 denote the center of clusters S1, S2, respectively*/ 

9: Initialize the center of clusters S1, S2 with f1, f2 
10: repeat 
11:  1 1k f← , 2 2k f←  

12:   for each user u uκ∈ do 

13:    compute the distance between u and cluster center k1 by 1 1( )DIST APDU u k= −  

14:   compute the distance between u and cluster center k2 by 22 ( )DIST APDU u k= −  
15:    if 

1 2DIST DIST<  then 
16:     { }1 1 us s← ∪  
17:    else 
18:      { }2 2 us s← ∪  
19:    end if 
20:  end for 
21:  for each user 1u S∈  do 

22:   1 1 1sum sum DIST← + , 1( ) ( ) /
i Iu

APDU u PDI i Iu
∈
∑=  

23:  end for 
24:  for each user 2u S∈  do 

25:   2 2 2sum sum DIST← + , 2 ( ) ( ) /
i Iu

APDU u PDI i Iu
∈
∑=  

26:  end for 

27:  if 1 2

1 2

sum sum

s s
≥   then 

28:   11
( )f mean APDU= , 22

min( )f APDU=  
29:  else 
30:   11

min( )f APDU= , 22
( )f mean APDU=  

31:  end if 
32: until ( 11k f=  and 2 2k f= ) 

33: if 1 2

1 2

sum sum

s s
≥  then 

34:     Cs 2S←  
35: else 
36:     Cs 1S←  
37: end if 
38: return Cs 

 
In Algorithm 1, Lines 1-32 are the modified K-means algorithm with new similarity 

measurement metric and new selection strategy of cluster centers. Lines 33-38 judge the 
cluster of anomaly rating users and return it. 

The time complexity for algorithm 1 is analyzed below. The time complexity for Line 1, 
Lines 2-4, Lines 5-7, Lines 8-9, Lines 10-32, and Lines 33-38 is (1)O , ( )uO I κ× , 
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( )max uO I κ× , ( )uO κ , 1 2_ [ (1) ( ) ( ) ( )u max maxrepeat times O O O S I O S Iκ× + + × + × +  

1 2( ) ( )]O S O S+ , and (1)O , respectively. Since 1 uS κ< , 2 uS κ< , maxI I< , and 

repeat_times is far less than uκ , the time complexity for Lines 10-32 is at most ( )uO Iκ × . 

Thus, the time complexity of Algorithm 1 is (1)O + ( )uO I κ× + ( )max uO I κ× + ( )uO κ + 

( )uO Iκ × + (1)O ( )uO Iκ≈ × . 
The space complexity analysis for Algorithm 1 is as follows. The space complexity for 

storing the input data (i.e., the user rating matrix R) and output data (i.e., the suspicious users 
cluster Cs) is at most ( )uO Iκ × + ( )uO κ . The space complexity for storing the array 

variables PDI and APDU, set variables I and uκ , set variables S1 and S2, and other variables 

such as f1, f2, k1, and k2 is ( )O I + ( )uO κ , ( )O I + ( )uO κ , ( )uO κ , and (1)O , respectively. 

Thus, the space complexity of Algorithm 1 is ( )uO Iκ × + ( )uO κ + 2 [ ( ) ( )]uO I O κ× +  

+ ( )uO κ + (1)O ( )uO Iκ≈ × . 

3.1.2  Identifying The Attack Users 
As the cluster of anomaly rating users obtained by Algorithm 1 may contain genuine users, we 
need to further identify the attack users in this cluster. 

Firstly, we seek the attacked item from the user rating database, which can be done by 
calculating the PDI of items in the rating database. For the case of push attacks, the attacked 
item is usually selected from unpopular items. The set of unpopular items is defined as 
follows: 

( )
, ( ) j I

PDI j
UI i i I PDI i

I
∈

 
 = ∈ < 
 
 

∑
                                            (5) 

where I denotes the set of items. 
Taking into account the ratings given by users in the cluster of anomaly rating users, we 

recalculate PDI of each item in the set of unpopular items, the attacked item is the item with 
the largest PDI in this set. 

Secondly, we further identify attackers in the cluster of anomaly rating users according to 
the attacked item. If a user u in the cluster of anomaly rating users rates the attacked item, then 
the user u is viewed as an attack user and the flag of user u is set to 1.  

According to the above analysis, we present an algorithm to further identify the attackers. 
 

Algorithm 2  identifying the attackers 
Input: user rating matrix R 
Output: the indicator matrix of attackers Z 

1:UI ←∅ , Sum_PDI← 0 
2: for each item i I∈ do       
3:  ( ) ( )

u
ui

PDI i r
u κ
∑= Γ
∈

   

4:   Sum_PDI← Sum_PDI+PDI(i) 
5: end for 
6: Avg_PDI← Sum_PDI / |I| 
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7: for each item i I∈ do     /* obtain the set of unpopular items */ 
8:   if (PDI(i)< Avg_PDI) then 
9:      {}UI UI i←


 

10:   endif 
11: end for 
12: Cs ← call Algorithm 1   /* obtain the cluster of anomaly rating users */ 
13: j← getAttackedItem(UI,Cs)   /* get the attacked item */ 
14: for each user u uκ∈ do      /* obtain the indicator matrix of attackers */ 
15:  if u ∈Cs and ruj=rmax  then /* rmax is the maximum rating allowed */ 
16:   ( ) 1Z u =  
17:  else 
18:   ( ) 0Z u =  
19:  end if 
20: end for 
21: return Z 

 
In Algorithm 2, Lines 1-11 obtain the set of unpopular items by calculating PDI of items in 

the rating database according to Eq. (5). Lines 12-13 obtain the cluster of anomaly rating users 
by calling Algorithm 1 and get the attacked item by function getAttackedItem(UI,Cs). Lines 
14-21 obtain the indicator matrix of attackers. 

The time complexity for Algorithm 2 is analyzed below. The time complexity for Lines 
1-11, Lines 12-13, and Lines 14-21 is ( )uO I κ× , ( )uO Iκ × , and ( )uO κ , respectively. 

Thus, the time complexity for Algorithm 2 is ( )uO Iκ × . 
The space complexity analysis for Algorithm 2 is as follows. The space complexity for 

storing the input data (i.e., the user rating matrix R) and output data (i.e., the indicator matrix 
of attackers Z) is ( )uO Iκ × + ( )uO κ . The space complexity for Lines 1-11, Lines 12-13, 

and Lines 14-21 is 3 ( ) ( )uO I O κ× + , ( )uO Iκ × , and ( )uO κ , respectively.  Therefore, 

The space complexity for Algorithm 2 is ( )uO Iκ × .  

3.2 Robust BPMF Model for Recommendation 

In MF model [30], the user rating matrix m nR ×∈ℜ  is decomposed into two low-rank matrices 
( )1 2, ,..., m d

mU U U U ×= ∈ℜ  and ( )1 2, ,..., n d
nV V V V ×= ∈ℜ  which are called the user and item 

feature matrices, where Ui and Vj are d-dimensional user and item feature vectors, m and n are 
the number of users and items, d is the feature dimension. The expression is below: 

*R U V Τ≈                                                               (6) 

PMF is a special matrix factorization of analyzing low dimensional factorization from the 
view of statistics [23], which supposes the user ratings, item and user feature vectors obey 
Gaussian distribution. Compared with the traditional matrix factorization (such as SVD), PMF 
is easier to deal with big data and sparse data. Because it no longer looks for the optimal low 
rank, but rebuilds the model to train the user and item feature vectors from the angle of 
probability. 

BPMF is a full Bayesian treatment of PMF model by integrating all model parameters and 
hyper-parameters to avoid tuning parameters [24], [25]. The conditional probability over the 
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observed ratings is given by: 

2 2

1 1

( | , , ) [ ( | , )] ij
m n

I
ij i j

i j

p R U V N R U Vσ σΤ

= =

=∏∏                                  (7) 

where ),|( 2σµxN  is the probability density function of Gaussian distribution with mean µ  
and variance 2σ , Rij is the rating of user i for item j, Iij is an indicator function that is 1 if user 
i rates on item j and 0, otherwise. The prior distributions over U and V are given by: 

1

1
( | , ) ( | , )

m

U U i U U
i

p U N Uµ µ −

=

Λ = Λ∏                                     (8) 

1

1
( | , ) ( | , )

n

V V j V V
j

p V N Vµ µ −

=

Λ = Λ∏                                      (9) 

Bayesian probabilistic matrix factorization supposes the user hyper-parameters 
{ , }U U UµΘ = Λ  and item hyper-parameters { , }V V VµΘ = Λ  obey the Gaussian-Wishart 

distribution. The prior distributions of UΘ and VΘ are given by: 

0( | ) ( | ) ( )U U U Up p pµΘ Θ = Λ Λ = 1
0 0 0 0( | , ( ) ) ( | , )U U UN W vwµ µ β −Λ Λ              (10) 

0( | ) ( | ) ( )V V V Vp p pµΘ Θ = Λ Λ = 1
0 0 0 0( | , ( ) ) ( | , )V V VN W vwµ µ β −Λ Λ             (11) 

where 0 0( | , )x W vw  is the Wishart distribution with 0v  degrees of freedom and a d d× scale 
matrix 0W ， 0 0 0 0{ , , }v WµΘ = . 

To develop attack-resistant CF recommendation algorithms, we construct a robust CF 
model by incorporating the detection results of user anomaly rating behaviors into the BPMF 
model. The reason for adopting BPMF model is that this model itself has better accuracy and 
robustness than other models. Particularly, we incorporate the indicator matrix of attackers Z 
obtained by Algorithm 2 into the prior distribution of item feature matrix V to decrease the 
negative impact of attackers. At the same time, we reserve the ratings of attackers on the 
unattacked items to alleviate the data sparsity, which is helpful to improve the 
recommendation accuracy. 

Depending on whether or not the item is an attacked target item, the following two cases 
should be taken into account. 

For the attacked item, we suppose the prior distribution of user ratings as follows: 
(1 )2 2

1 1
( | , , ) [ ( | , )] ij i

m n
I Z

ij i j
i j

p R U V N R U Vσ σ −Τ

= =

=∏∏                               (12) 

For the unattacked items, we use Eq. (7) as the prior distribution of user ratings. That is to 
say, we ignore the impact of attackers on the unattacked items. 

Based on the constructed robust BPMF model, we design a robust CF algorithm, namely 
RBPMF-CF, which is described below: 
 
Algorithm 3  RBPMF-CF 
Input: user rating matrix R, the feature dimension d, the indicator matrix of attackers Z 
Output: feature matrices U, V 
1: Initialize the feature matrices U, V 
2: for k=1 to loop do  /* loop is the number of iterations*/ 
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3:    sample the hyper-parameters:  
~ ( | , )0

k kp UU UΘ Θ Θ , ~ ( | , )0
k kp VV VΘ Θ Θ  

4:     for each user u uκ∈  do    

5:        sample user feature: 1 ~ ( | , , )k kkU p U R Vu u U
+ Θ  

6:     end for 
7:     for each item i I∈ do   
8:       if  item i is an attacked item  then 
9:          sample item feature: 1 1~ ( | , , , )kk kV p V R Z Ui i V

+ + Θ  
10:       else 
11:          sample item feature: 1 1~ ( | , , )kk kV p V R Ui i V

+ + Θ  
12:       end if 
13:    end for 
14: end for 
15: return U, V 
 

In Algorithm 3, Lines 1-6 initialize the feature matrices U, V and sample the user features. 
Lines 7-14 sample the item features. If the sampled item is an attacked item, then we exclude 
the ratings of attackers on the attacked item. Line 15 is to return the feature matrices U, V. 

The time complexity for Algorithm 3 is analyzed below. The time complexity for Line 1, 
Lines 2-14, and Line 15 is ( )uO d κ× + ( )O d I× , [ ( ) ( )]uloop O O Iκ× + , and (1)O , 

respectively. Since d and loop are far less than uκ  and I , the time complexity for Algorithm 

3 is ( )uO Iκ + . 
The space complexity analysis for Algorithm 3 is as follows. The space complexity for 

storing the input data and output data is ( )uO Iκ × + (1)O + ( )uO κ  and ( )uO d κ× + 

( )O d I× , respectively. The space complexity for storing the set variables I, uκ  and other 

variables such as k, u, and i is ( )O I + ( )uO κ  and (1)O , respectively. Therefore, the space 

complexity for Algorithm 3 is ( )uO Iκ × . 

4. Experimental Evaluation 

4.1 Experimental Data and Settings 
We use the following datasets to evaluate our RBPMF-CF algorithm.  

(1) MovieLens 100K dataset.1 It includes 100000 ratings from 943 users on 1682 movies. 
The ratings are all integer values between 1 and 5, where 1 denotes disliked and 5 denotes the 
most liked. The sparsity level of this dataset is 93.7%. We randomly extract 80% ratings from 
this dataset as training set and the remaining 20% are used as test set. 

(2) Netflix dataset.2 It includes 103297638 ratings on 17770 movies by 480189 users and its 
sparsity level is 98.8%. All ratings are integer values between 1 and 5. We randomly extract 
214690 ratings on 4000 movies by 2000 users as the sampled dataset whose sparsity level is 

1 http://grouplens.org/datasets/movielens/100k/ 
2 It was constructed to support participants in the Netflix prize ( http://netflixprize.com ) 
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97.3%. The partition method of training and test sets for the sampled dataset is the same as that 
of MovieLens 100K dataset. 

To evaluate the robustness of RBPMF-CF, the attack profiles generated by average attack, 
random attack, and AoP attack, respectively are injected into the training sets. We set the filler 
size to 3% and 5%, the attack size to 2%, 4% , 6%, 8%, and 10%, respectively. The target item 
is randomly chosen from unpopular items and all attack profiles are generated for push attacks. 

In our experiments, we set the dimension of features d to 10 and the number of iterations 
loop to 50 for RBPMF-CF algorithm. 

4.2 Evaluation Metrics 
We use root mean squared error (RMSE) and prediction shift (PS) to measure the algorithm's 
performance. 

RMSE is a metric to measure the algorithm's prediction accuracy and it is defined below 
[31] 

2
( )

ˆ( )
RMSE ui uiu,i T

r r

T
∈

−
=
∑                                            (13) 

where T is the test set, uir  and ûir  are the real and predicted ratings of user u on item i, 
respectively. 

PS is a metric to measure the algorithm's robustness, which is defined below [10] 

           
ˆ ˆ

PS u

'
ui ui

u

u r rκ
κ

∈ −
=
∑                                                     (14) 

where uκ is the number of users in the test set, ûir  and ˆ'

uir  are the predicted ratings of user u 
on item i before and after attacks, respectively.  

4.3 Experimental Results and Analysis 
To  illustrate the superiority of RBPMF-CF, we compare it with three baseline algorithms. 

(1) MMF: A robust MF algorithm based on M-estimator [18]. In our experiments, we set the 
feature dimension, the number of iterations, and the learning rate to 10, 25, and 0.01, 
respectively for MMF algorithm. 

(2) LTSMF: A robust MF algorithm based on least trimmed square estimator [19]. In our 
experiments, we set the feature dimension, the number of iterations, and the learning rate to 10, 
25, and 0.01, respectively for LTSMF algorithm. 

(3) VarSelect SVD: A robust recommendation algorithm based on principal component 
analysis and singular value decomposition [20]. In our experiments, we set the feature 
dimension, the number of iterations, and the learning rate to 10, 100, and 0.01, respectively for 
VarSelect SVD algorithm. 

4.3.1 Comparison of Performance on The MovieLens Dataset 
Table 1 shows the comparison of performance for MMF,  LTSMF, VarSelect SVD, and 
RBPMF-CF on the MovieLens dataset under various attacks at different attack sizes across 
different filler sizes. 

As shown in Table 1, under three attacks, the RMSE of MMF and LTSMF is above 0.96, 
and the RMSE values of both algorithms fluctuate between 0.96 and 0.97 as the attack and 
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filler sizes increase. On the whole, the accuracy of two algorithms is relatively close. The 
RMSE of VarSelect SVD is about 0.95. Nevertheless, the RMSE of VarSelect SVD under 
average and AoP attacks is almost above 0.95. Moreover, the majority RMSE values of 
VarSelect SVD under AoP attack are greater than those of it under average attack. The reason 
is that AoP attack profiles have very high similarity with genuine profiles so that parts of them 
are viewed as genuine profiles. By contrast, the RMSE of RBPMF-CF under three attacks is 
reduced obviously, which is below 0.92. This indicates that the combination of attack 
detection and BPMF model can further improve the accuracy of algorithm. Furthermore, the 
RMSE of RBPMF-CF under three attacks has little change at various attack sizes and filler 
sizes, which means RBPMF-CF is stable. Thus, RBPMF-CF has better accuracy than MMF, 
LTSMF, and VarSelect SVD on the MovieLens dataset. 
 

Table 1. Comparison of performance on the MovieLens dataset 
 Filler size  3% 5% 

 Attack size  2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 

Random 
attack 

MMF 
RMSE 0.9635 0.9651 0.9606 0.9644 0.9609 0.9653 0.9631 0.9669 0.9638 0.9629 

PS 0.6051 0.8007 0.8543 0.8861 0.9249 0.6469 0.8108 0.896 0.95 0.9672 

LTSMF 
RMSE 0.9626 0.9662 0.9639 0.9641 0.9616 0.9672 0.9646 0.9651 0.964 0.9609 

PS 0.6079 0.7667 0.8603 0.8873 0.9293 0.6539 0.7896 0.8786 0.9758 0.9857 

VarSelect 
SVD 

RMSE 0.9553 0.952 0.9469 0.9455 0.9427 0.9488 0.9472 0.9449 0.9415 0.9414 

PS 0.3739 0.5832 0.6373 0.7085 0.7206 0.4327 0.6698 0.7268 0.7337 0.7362 

RBPMF-CF 
RMSE 0.9148 0.9134 0.9146 0.9145 0.914 0.9147 0.914 0.9147 0.9141 0.9148 

PS 0.3597 0.3247 0.3521 0.416 0.3966 0.3608 0.3413 0.3539 0.4103 0.4111 

Average 
attack 

MMF 
RMSE 0.9656 0.9612 0.9665 0.9624 0.9615 0.9627 0.9619 0.9661 0.9662 0.9609 

PS 0.8029 0.9493 1.039 1.1173 1.1569 0.8526 0.9679 1.0632 1.1635 1.1642 

LTSMF 
RMSE 0.9606 0.9686 0.9692 0.9654 0.9635 0.9644 0.9663 0.9636 0.9628 0.9653 

PS 0.8586 1.0056 1.0896 1.1881 1.1924 0.8551 1.0637 1.1219 1.1961 1.2073 

VarSelect 
SVD 

RMSE 0.9572 0.9556 0.9534 0.9562 0.9524 0.9527 0.9513 0.9494 0.9506 0.9511 

PS 0.5219 0.7246 0.8832 0.9711 1.0258 0.6181 0.8668 0.9426 1.117 1.1398 

RBPMF-CF 
RMSE 0.9147 0.9141 0.9146 0.9144 0.9151 0.9149 0.9144 0.9164 0.9158 0.9162 

PS 0.3574 0.3195 0.3685 0.4212 0.376 0.3594 0.3246 0.3547 0.4245 0.3903 

AoP 
attack 

MMF 
RMSE 0.9666 0.9608 0.9613 0.9618 0.9658 0.9632 0.9644 0.9694 0.9668 0.9606 

PS 0.8934 1.0207 1.134 1.1894 1.2278 0.9095 1.0658 1.1923 1.2262 1.2513 

LTSMF 
RMSE 0.9665 0.9673 0.9637 0.965 0.9669 0.9635 0.9612 0.9694 0.9655 0.9654 

PS 0.8975 1.0321 1.1335 1.1754 1.2127 0.8992 1.1156 1.2297 1.2304 1.2808 

VarSelect 
SVD 

RMSE 0.9571 0.958 0.9583 0.9558 0.9592 0.9547 0.9557 0.9546 0.9563 0.9585 

PS 0.6459 0.9614 0.9815 1.081 1.1431 0.7537 0.9811 1.0892 1.1942 1.2918 

RBPMF-CF 
RMSE 0.9147 0.9137 0.9146 0.9144 0.9149 0.915 0.9146 0.9155 0.915 0.915 

PS 0.3605 0.3149 0.3686 0.4165 0.3982 0.3584 0.3259 0.3414 0.4142 0.3726 
 

It can be seen from Table 1, for the same filler size and attack size, the PS of RBPMF-CF 
under three attacks is smaller than that of MMF, LTSMF, and VarSelect SVD, which means 
the robustness of RBPMF-CF is better than that of other algorithms. It can also be seen from 
Table 1, the PS of MMF, LTSMF and VarSelect SVD under AoP attack is slightly greater 
than that of them under average attack. The reason is that AoP attack profiles use a certain 
percentage of popular items as filler items, which makes them look like genuine ones. Due to 
the high similarity between them, some AoP attack profiles are regarded as genuine profiles by 
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three algorithms, thus leading to a great prediction shift. However, the PS values of 
RBPMF-CF under AoP attack are basically consistent with those of it under average attack. 
This indicates that RBPMF-CF is still robust against AoP attack. Therefore, RBPMF-CF is 
more robust than MMF, LTSMF and VarSelect SVD on the MovieLens dataset. 

4.3.2 Comparison of Performance on The Netflix Dataset 
Table 2 shows the comparison of performance for MMF,  LTSMF, VarSelect SVD, and 
RBPMF-CF on the Netflix dataset under various attacks at different attack sizes across 
different filler sizes. 
 

Table 2. Comparison of performance on the Netflix dataset 
 Filler size  3% 5% 

 Attack size  2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 

Random 
attack 

MMF 
RMSE 0.9624 0.9598 0.9606 0.9583 0.9581 0.9589 0.961 0.9586 0.9566 0.9576 

PS 0.8324 1.0147 1.0056 1.1558 1.0543 0.7255 1.0043 1.1202 1.0015 1.0681 

LTSMF 
RMSE 0.9747 0.9721 0.971 0.9719 0.9691 0.9669 0.9666 0.9674 0.975 0.9691 

PS 0.8468 0.8426 0.8831 0.9787 0.9738 0.6016 0.6564 0.7325 0.9077 0.98 

VarSelect 
SVD 

RMSE 0.9518 0.947 0.9429 0.9393 0.9383 0.9426 0.9383 0.9361 0.9351 0.9342 

PS 0.5496 0.7037 0.6994 0.7786 0.8249 0.5183 0.7095 0.7818 0.8566 0.9184 

RBPMF-CF 
RMSE 0.9061 0.9058 0.906 0.9067 0.9068 0.9062 0.906 0.9068 0.9068 0.907 

PS 0.3469 0.3319 0.3767 0.361 0.321 0.3552 0.3069 0.385 0.3466 0.3249 

Average 
attack 

MMF 
RMSE 0.9641 0.9665 0.9655 0.9686 0.969 0.9649 0.9695 0.9682 0.9662 0.9711 

PS 0.9543 1.1305 1.1835 1.2224 1.2472 0.892 1.1962 1.1988 1.2233 1.2981 

LTSMF 
RMSE 0.9792 0.9725 0.9783 0.9785 0.9753 0.9802 0.9758 0.976 0.9784 0.9774 

PS 0.9497 1.0668 1.1723 1.1943 1.1334 0.9167 1.0361 1.0768 1.1526 1.1896 

VarSelect 
SVD 

RMSE 0.9563 0.954 0.9506 0.9507 0.9489 0.9497 0.9484 0.9469 0.944 0.9439 

PS 0.5215 0.7547 0.8437 0.9898 1.0009 0.6509 0.8412 0.9467 1.079 1.1076 

RBPMF-CF 
RMSE 0.9062 0.9069 0.9071 0.908 0.9085 0.9072 0.9073 0.9089 0.9088 0.9103 

PS 0.3616 0.3169 0.3463 0.344 0.2978 0.336 0.3024 0.3577 0.3345 0.2977 

AoP 
attack 

MMF 
RMSE 0.9717 0.9727 0.9724 0.9804 0.9765 0.9716 0.9746 0.9748 0.979 0.9765 

PS 1.0801 1.2333 1.3134 1.2751 1.2999 1.0634 1.23544 1.245 1.3004 1.2891 

LTSMF 
RMSE 0.9807 0.9797 0.975 0.9813 0.9802 0.9799 0.9812 0.9858 0.9782 0.9861 

PS 1.0028 1.1415 1.2454 1.2366 1.2486 0.9497 1.0578 1.115 1.2164 1.2069 

VarSelect 
SVD 

RMSE 0.9583 0.9595 0.9599 0.9613 0.9606 0.9552 0.957 0.956 0.957 0.9584 

PS 0.7333 0.919 1.0404 1.1559 1.1865 0.7825 1.0628 1.1252 1.2555 1.2965 

RBPMF-CF 
RMSE 0.9062 0.9063 0.9068 0.9074 0.9075 0.9063 0.9062 0.9071 0.9079 0.9087 

PS 0.3749 0.3249 0.3793 0.351 0.3107 0.3557 0.33 0.3621 0.3368 0.293 

 
As shown in Table 2, under random attack, the RMSE of RBPMF-CF is below 0.91, which 

is better than that MMF, LTSMF, and VarSelect SVD. Moreover, the change of its RMSE is 
relatively stable. This means that the increase of attack and filler sizes has little impact on the 
accuracy of RBPMF-CF. Under average attack, the RMSE of MMF and LTSMF is close to 
0.97 and 0.98, respectively, which is slightly greater than that of them on the MovieLens 
dataset. This means the accuracy of two algorithms is affected to some extent by the sparsity of 
Netflix dataset. The RMSE of VarSelect SVD under average attack is about 0.95, which is 
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better than that of MMF and LTSMF. The RMSE of RBPMF-CF under average attack is about 
0.91, which is slightly smaller than that of it on the MovieLens dataset. This indicates that the 
sparsity of Netflix dataset has little impact on the accuracy of RBPMF-CF. For the case of AoP 
attack, the RMSE of MMF and LTSMF is above 0.97, the RMSE of VarSelect SVD is close to 
0.96, which is slightly greater than that of them under average attack. This is because parts of 
AoP attack profiles are viewed as genuine ones due to their high similarity, resulting in a 
decline in accuracy for three algorithms. The RMSE of RBPMF-CF is about 0.91, which is 
better than that of baselines. Thus, RBPMF-CF also has better accuracy than MMF, LTSMF, 
and VarSelect SVD on the Netflix dataset. 

It can be seen from Table 2, the PS values of RBPMF-CF under three attacks are smaller 
than those of MMF, LTSMF, and VarSelect SVD, which indicates that RBPMF-CF is more 
robust against three attacks than the baseline algorithms. For the case of AoP attack, the PS 
values of MMF, LTSMF, and VarSelect SVD are slightly greater than those of them under 
average attack. This is because parts of AoP attack profiles are regarded as genuine profiles by 
three algorithms. The PS values of RBPMF-CF under AoP attack are basically consistent with 
the results under average attack, which means RBPMF-CF is also robust against AoP attack. 
Therefore, the robustness of RBPMF-CF is also better than that of MMF, LTSMF, and 
VarSelect SVD under three attacks on the Netflix dataset. 

4.3.3 The Effectiveness of Our Anomaly Rating Behavior Detection Method 
To show the effectiveness of our anomaly rating behavior detection method (i.e., the first step 
of the proposed model, which is called ARBD for short), we conduct further experiments on 
two datasets from three aspects. Firstly, we compare ARBD with two existing shilling attack 
detection methods in the literature of recommender systems using precision and recall metrics. 
Secondly, we substitute ARBD with an existing detection method and perform the proposed 
Bayesian probabilistic matrix factorization model after removing the detected anomaly ratings. 
Thirdly, we combine ARBD with the basic matrix factorization (MF) model, which is denoted 
as ARBD+MF for convenience, and compare it with the basic MF.  

(1) Comparison of detection performance. To show the performance of ARBD in detecting 
anomaly rating users, the precision and recall metrics are used for evaluating its performance, 
which are defined below: 

Precision TP
TP FP

=
+

                                                       (15) 

Recall TP
TP FN

=
+

                                                           (16) 

where TP and FN are the number of attack profiles correctly identified and misclassified, 
respectively, FP is the number of genuine profiles misclassified. 

 To show the superiority of ARBD, we compare it with two baselines.  
a) CBS (Catch the Black Sheep) [14]: An unsupervised approach for detecting shilling 

attacks, which needs labeling seed attack users. In the experiment, 20% attack users for 
each attack size are used as the seeds. 

b) UD-HMM [16]: An unsupervised approach for detecting shilling attacks based on 
hidden Markov model and hierarchical clustering. In the experiment, the parameters N 
and α  are set to 5 and 0.7, respectively. 

Tables 3 and 4 list the precision and recall of three methods with various attacks on the 
MovieLens and Netflix datasets, respectively. 
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Table 3. Precision and recall of three methods on the Movielens dataset 
 Filler size  3% 5% 

 Attack size  2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 

Random 
attack 

CBS 
Precision 0.6842 0.8205 0.9000 0.8765 0.8932 0.6842 0.8974 0.9000 0.9259 0.9126 

Recall 0.6842 0.8421 0.9474 0.9467 0.9787 0.6842 0.9211 0.9474 1.0000 1.0000 

UD-HMM 
Precision 0.6667 0.9744 0.7917 0.9615 1 0.6786 0.8444 0.9333 0.9737 0.9691 

Recall 0.9649 1 1 1 0.9929 1 1 0.9942 0.9867 1 

ARBD 
Precision 1 1 1 1 1 1 1 1 1 1 

Recall 1 1 1 1 1 1 1 1 1 1 

Average 
attack 

CBS 
Precision 0.5263 0.8205 0.9000 0.9136 0.8932 0.7895 0.8974 0.9000 0.9259 0.9126 

Recall 0.5263 0.8421 0.9474 0.9867 0.9787 0.7895 0.9211 0.9474 1.0000 1.0000 

UD-HMM 
Precision 0.6781 1 0.9828 0.9868 0.9792 0.7261 0.8261 0.9661 0.9868 0.9895 

Recall 0.9649 1 1 1 1 1 1 1 1 1 

ARBD 
Precision 1 1 1 1 1 1 1 1 1 1 

Recall 1 1 1 1 1 1 1 1 1 1 

AoP 
attack 

CBS 
Precision 0.6842 0.8205 0.9167 0.8765 0.9029 0.6667 0.8421 0.8667 0.9259 0.8835 

Recall 0.6842 0.8421 0.9649 0.9467 0.9894 0.6842 0.8421 0.9123 1.0000 0.9681 

UD-HMM 
Precision 0.1597 0.6491 0.5729 0.8242 0.7899 0.1027 0.3396 0.5534 0.4054 0.4253 

Recall 1 0.9912 0.9883 1 0.9929 1 0.9474 1 1 1 

ARBD 
Precision 1 1 1 1 1 1 1 1 1 1 

Recall 1 1 1 1 1 1 1 1 1 1 

 
Table 4. Precision and recall of three methods on the Netflix dataset 

 Filler size  3% 5% 

 Attack size  2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 

Random 
attack 

CBS 
Precision 0.4000 0.7470 0.8189 0.8605 0.8955 0.5250 0.7229 0.8976 0.8895 0.9000 

Recall 0.4000 0.7750 0.8667 0.9250 0.9850 0.5250 0.7500 0.9500 0.9563 0.9900 

UD-HMM 
Precision 0.5634 0.3791 0.8451 0.9877 0.9901 0.3500 0.4598 0.9375 0.9938 0.9217 

Recall 1 1 1 1 1 0.9583 1 1 1 1 

ARBD 
Precision 1 1 1 1 1 1 1 1 1 1 

Recall 1 1 1 1 1 1 1 1 1 1 

Average 
attack 

CBS 
Precision 0.4500 0.6988 0.8346 0.8547 0.8818 0.6000 0.7590 0.8425 0.8721 0.9045 

Recall 0.4500 0.7250 0.8833 0.9188 0.9700 0.6000 0.7875 0.8917 0.9375 0.9950 

UD-HMM 
Precision 0.1498 0.8989 0.9677 0.9877 0.9901 0.7843 0.8602 0.7362 0.9938 0.9852 

Recall 1 1 1 1 1 1 1 1 1 1 

ARBD 
Precision 1 1 1 1 1 1 1 1 1 1 

Recall 1 1 1 1 1 1 1 1 1 1 

AoP 
attack 

CBS 
Precision 0.5250 0.6988 0.8583 0.8721 0.8864 0.4000 0.8193 0.8189 0.8663 0.9045 

Recall 0.5250 0.7250 0.9083 0.9375 0.9750 0.4000 0.8500 0.8667 0.9313 0.9950 

UD-HMM 
Precision 0.0756 0.4545 0.5941 0.8939 0.9132 0.0659 0.4145 0.3750 0.8602 0.9009 

Recall 1 1 1 1 1 1 1 1 1 1 

ARBD 
Precision 1 1 1 1 1 1 1 1 1 1 

Recall 1 1 1 1 1 1 1 1 1 1 
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As shown in Tables 3 and 4, CBS maintains high precision and recall in detecting attacks 
with large attack sizes, which indicates that CBS can correctly detect most attack profiles. 
However, it performs poorly when detecting attacks with small attack sizes. The reason is that 
the number of seed attack users for CBS is small at low attack sizes. As to UD-HMM, it can 
effectively detect random and average attacks with large attack sizes, but it performs poorly in 
detecting the two attacks with small attack sizes. When detecting AoP attack, the overall 
performance of UD-HMM is not very good because a number of genuine profiles are 
misidentified. All the precision and recall values of ARBD are 1, which indicates that ARBD 
can correctly detect attack profiles and none of them are misidentified. These results illustrate 
the effectiveness of ARBD in detecting attacks. Therefore, ARBD outperforms CBS and 
UD-HMM in detecting three attacks. 

(2) Comparison of RMSE and PS by substituting ARBD with UD-HMM. To show the 
effectiveness of ARBD, we substitute ARBD with UD-HMM and combine UD-HMM with 
the proposed Bayesian probabilistic matrix factorization model (denoted as UD-HMM+BPMF 
for convenience) to make recommendations. Tables 5 and 6 list the RMSE and PS of 
UD-HMM+BPMF and RBPMF-CF on the MovieLens and Netflix datasets with various 
attacks, respectively.  

As shown in Table 5, the RMSE of UD-HMM+BPMF under three attacks is between 
0.9134 and 0.9164, the RMSE of RBPMF-CF under three attacks is between 0.9134 and 
0.9156. These results indicate that there is little difference between UD-HMM+BPMF and 
RBPMF-CF in prediction accuracy on the MovieLens dataset. The PS of UD-HMM+BPMF 
under three attacks is between 0.3019 and 0.4746, the PS of RBPMF-CF under three attacks is 
between 0.3163 and 0.4216. These results illustrate that there is no big difference between 
UD-HMM+BPMF and RBPMF-CF in prediction shift on the MovieLens dataset.  

 
Table 5. Comparison of RMSE and PS for UD-HMM+BPMF and RBPMF-CF on the MovieLens 

dataset 
 Filler size  3% 5% 

 Attack size  2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 

Random 
attack 

UD-HMM+BPMF 
RMSE 0.9148 0.9134 0.9147 0.9145 0.9140 0.9147 0.9140 0.9148 0.9142 0.9148 

PS 0.3539 0.3019 0.3894 0.3923 0.4370 0.3522 0.3321 0.4134 0.3872 0.4318 

RBPMF-CF 
RMSE 0.9148 0.9134 0.9146 0.9145 0.9140 0.9147 0.9140 0.9147 0.9141 0.9148 

PS 0.3613 0.3276 0.3441 0.4145 0.3941 0.3637 0.3442 0.3458 0.4092 0.4084 

Average 
attack 

UD-HMM+BPMF 
RMSE 0.9147 0.9141 0.9146 0.9144 0.9151 0.9149 0.9144 0.9164 0.9159 0.9162 

PS 0.3380 0.3496 0.3985 0.4091 0.4013 0.3578 0.3229 0.3887 0.4021 0.4097 

RBPMF-CF 
RMSE 0.9148 0.9145 0.9147 0.9146 0.9150 0.9149 0.9146 0.9156 0.9153 0.9155 

PS 0.3592 0.3225 0.3591 0.4194 0.3724 0.3619 0.3291 0.3466 0.4216 0.3874 

AoP 
attack 

UD-HMM+BPMF 
RMSE 0.9147 0.9137 0.9147 0.9144 0.9149 0.9150 0.9146 0.9156 0.9151 0.9150 

PS 0.3661 0.3127 0.4035 0.3929 0.4233 0.3518 0.3297 0.4135 0.4746 0.4665 

RBPMF-CF 
RMSE 0.9148 0.9143 0.9147 0.9146 0.9149 0.9149 0.9147 0.9152 0.9149 0.9149 

PS 0.3633 0.3163 0.3595 0.4148 0.3953 0.3615 0.3271 0.3339 0.4124 0.3695 
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Table 6. Comparison of RMSE and PS for UD-HMM+BPMF and RBPMF-CF on the Netflix dataset 
 Filler size  3% 5% 

 Attack size  2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 

Random 
attack 

UD-HMM+BPMF 
RMSE 0.8896 0.8890 0.8896 0.8897 0.8903 0.8900 0.8895 0.8901 0.8900 0.8911 

PS 0.3541 0.4117 0.3130 0.4380 0.3698 0.3608 0.4542 0.3183 0.4240 0.5392 

RBPMF-CF 
RMSE 0.8896 0.8889 0.8896 0.8897 0.8903 0.8900 0.8895 0.8901 0.8900 0.8911 

PS 0.3603 0.4382 0.3139 0.4380 0.3698 0.3560 0.4542 0.3183 0.4145 0.3834 

Average 
attack 

UD-HMM+BPMF 
RMSE 0.8887 0.8871 0.8869 0.8862 0.8867 0.8882 0.8862 0.8862 0.8854 0.8861 

PS 0.3469 0.3972 0.3320 0.3870 0.3875 0.3539 0.4647 0.3158 0.3646 0.3679 

RBPMF-CF 
RMSE 0.8880 0.8889 0.8876 0.8911 0.8878 0.8880 0.8882 0.8882 0.8880 0.8889 

PS 0.3446 0.4380 0.3235 0.3870 0.3875 0.3679 0.4572 0.3161 0.3646 0.3679 

AoP 
attack 

UD-HMM+BPMF 
RMSE 0.8889 0.8881 0.8882 0.8882 0.8880 0.8890 0.8876 0.8881 0.8880 0.8888 

PS 0.8339 1.0018 0.4178 0.4602 0.3535 0.9803 0.579 0.4264 0.3665 0.5681 

RBPMF-CF 
RMSE 0.8889 0.8880 0.8882 0.8882 0.8880 0.8889 0.8876 0.8911 0.8878 0.8911 

PS 0.3584 0.4471 0.3215 0.4128 0.3703 0.3380 0.4364 0.3139 0.3609 0.3904 

 
It can be seen from Table 6, under three attacks, the RMSE of UD-HMM+BPMF is 

between 0.8854 and 0.8911, the RMSE of RBPMF-CF is between 0.8876 and 0.8911. These 
results illustrate that the prediction accuracy of UD-HMM+BPMF on the Netflix dataset is 
almost the same with that of RBPMF-CF. The PS of UD-HMM+BPMF under random and 
average attacks is between 0.3130 and 0.5392, the PS of RBPMF-CF under random and 
average attacks is between 0.3139 and 0.4572. These results illustrate that there is no obvious 
difference between UD-HMM+BPMF and RBPMF-CF in prediction shift under random and 
average attacks on the Netflix dataset. As to AoP attack, the PS of UD-HMM+BPMF is 
between 0.3553 and 1.0018, which is larger than that of it under random and average attacks. 
This is because UD-HMM performs poorly in detecting AoP attack. The PS of RBPMF-CF 
under AoP attack is between 0.3139 and 0.4471, which has little difference compared with that 
of it under random and average attacks. This again illustrates the superiority of ARBD in 
detecting anomaly rating users. 

(3) Comparison of RMSE and PS for the basic MF and ARBD+MF. To further show the 
effectiveness of ARBD, we conduct experiments to compare RMSE and PS of the basic MF 
and ARBD+MF on the MovieLens and Netflix datasets with various attacks. Tables 7 and 8 
list the RMSE and PS of the basic MF and ARBD+MF on the MovieLens and Netflix datasets, 
respectively. 

As shown in Table 7, under three attacks, the RMSE of basic MF is between 0.9701 and 
0.9760, the RMSE of ARBD+MF is between 0.9725 and 0.9764. Clearly, there is almost no 
difference between the basic MF and ARBD+MF in prediction accuracy. As to the prediction 
shift metric, the PS of basic MF under three attacks is between 0.8009 and 1.4840, the PS of 
ARBD+MF under three attacks is between 0.0824 and 0.1973. Clearly, ARBD+MF is more 
robust against attacks than the basic MF on the MovieLens dataset.  

As shown in Table 8, under three attacks, the RMSE of basic MF is between 0.9533 and 
0.9618, the RMSE of ARBD+MF is between 0.9621 and 0.9653, which has little difference 
between them in prediction accuracy. Under three attacks, the PS of basic MF is between 
1.1482 and 1.7988, the PS of ARBD+MF is between 0.0715 and 0.1661. Clearly, the 
robustness of ARBD+MF on the Netflix dataset is much better than that of basic MF. 

Therefore, the combination of ARBD with the basic MF model (i.e., ARBD+MF) can 
significantly improve the robustness of the basic MF. This again illustrates the effectiveness of 
ARBD in detecting anomaly rating users. 
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Table 7. RMSE and PS of the basic MF and ARBD+MF on the MovieLens dataset 
 Filler size  3% 5% 

 Attack size  2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 

Random 
attack 

basic MF 
RMSE 0.9729 0.9715 0.9721 0.9701 0.9712 0.9702 0.9721 0.9724 0.9709 0.9720 

PS 0.8009 0.8909 1.0151 0.9595 0.9940 0.7799 0.8791 0.9669 0.9783 1.0409 

ARBD+MF 
RMSE 0.9747 0.9725 0.9746 0.9744 0.9754 0.9746 0.9749 0.9729 0.9738 0.9752 

PS 0.1124 0.1630 0.1382 0.0864 0.1032 0.1011 0.1098 0.1002 0.1631 0.1350 

Average 
attack 

basic MF 
RMSE 0.9743 0.9721 0.9717 0.9707 0.9718 0.9732 0.9730 0.9733 0.9734 0.9714 

PS 0.9774 1.1246 1.2018 1.2127 1.3053 0.9400 1.1299 1.1884 1.2436 1.2990 

ARBD+MF 
RMSE 0.9732 0.9741 0.9745 0.9748 0.9735 0.9741 0.9733 0.9749 0.9743 0.9733 

PS 0.0976 0.1973 0.1560 0.2042 0.0824 0.1342 0.1717 0.1111 0.1556 0.1474 

AoP 
attack 

basic MF 
RMSE 0.9744 0.9740 0.9760 0.9731 0.9762 0.9738 0.9757 0.9746 0.9738 0.9740 

PS 1.0230 1.3028 1.3445 1.4724 1.4840 1.0997 1.3082 1.3945 1.4477 1.4566 

ARBD+MF 
RMSE 0.9744 0.9756 0.9744 0.9744 0.9737 0.9740 0.9760 0.9734 0.9764 0.9748 

PS 0.1255 0.1022 0.1142 0.0891 0.1522 0.1733 0.0887 0.1385 0.1605 0.1899 
 

Table 8. RMSE and PS of the basic MF and ARBD+MF on the Netflix dataset 
 Filler size  3% 5% 

 Attack size  2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 

Random 
attack 

basic MF 
RMSE 0.9607 0.9560 0.9544 0.9539 0.9547 0.9564 0.9557 0.9540 0.9533 0.9533 

PS 1.1482 1.2996 1.3733 1.4594 1.4614 1.1891 1.3353 1.4480 1.4745 1.5095 

ARBD+MF 
RMSE 0.9635 0.9636 0.9639 0.9653 0.9632 0.9621 0.9641 0.9633 0.9641 0.9641 

PS 0.1428 0.1155 0.1089 0.0890 0.1167 0.1154 0.1228 0.1280 0.1140 0.0944 

Average 
attack 

basic MF 
RMSE 0.9607 0.9560 0.9544 0.9539 0.9547 0.9564 0.9557 0.9540 0.9533 0.9533 

PS 1.1482 1.2996 1.3733 1.4594 1.4614 1.1891 1.3353 1.4480 1.4745 1.5095 

ARBD+MF 
RMSE 0.9635 0.9636 0.9639 0.9653 0.9632 0.9621 0.9641 0.9633 0.9641 0.9641 

PS 0.1428 0.1155 0.1089 0.0890 0.1167 0.1154 0.1228 0.1280 0.1140 0.0944 

AoP 
attack 

basic MF 
RMSE 0.9639 0.9608 0.9618 0.9591 0.9602 0.9601 0.9597 0.9597 0.9596 0.9580 

PS 1.4445 1.6064 1.7041 1.7291 1.7536 1.4774 1.6193 1.7026 1.7644 1.7988 

ARBD+MF 
RMSE 0.9632 0.9635 0.9643 0.9645 0.9625 0.9627 0.9640 0.9625 0.9651 0.9635 

PS 0.1130 0.0961 0.1231 0.0715 0.0887 0.1273 0.1661 0.1074 0.0909 0.1200 

4.3.4 Comparison of Actual Runtime for Four Algorithms 

The actual runtime for a model-based recommendation algorithm consists of the training time 
and predictive time, which refers to the time required to train a predictive model on the 
training set and the time required to perform rating prediction for the target item on the test set, 
respectively. For RBPMF-CF algorithm, the training time also includes the time for detecting 
anomaly rating users. To compare the runtime of four algorithms, we carry out experiments on 
two datasets and calculate their training time and predictive time, respectively. Tables 9 and 
10 list the training and predictive time for four algorithms, respectively. 

   
Table 9. The training time for four algorithms (s) 

Algorithms 
Datasets 

Movielens  Netflix 

MMF 9.25 438.72 

LTSMF 10.28 502.95 

VarSelect SVD 106.92 2518.22 

RBPMF-CF 10.99 156.32 
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  Table 10. The predictive time for four algorithms (μs) 

Algorithms 
Datasets 

Movielens  Netflix 

MMF 4.15 4.92 

LTSMF 5.26 6.05 

VarSelect SVD 16.61 42.01 

RBPMF-CF 3.78 2.77 

 
As listed in Table 9, the training time of VarSelect SVD on the MovieLens dataset is the 

largest, the training time of MMF, LTSMF and RBPMF-CF on the MovieLens 100K dataset 
has no obvious difference. As to Netflix dataset, the training time of VarSelect SVD is still the 
largest, LTSMF comes the second, MMF ranks the third, and the training time of RBPMF-CF 
is the smallest. Therefore, RBPMF-CF has obvious advantage in training time on the Netflix 
dataset. 

In Table 10, the predictive time of four algorithms on two datasets is all in microseconds, 
which means four algorithms can make a predictive rating for a target item very quickly. 
Therefore, there is no big difference between them in predictive time while the predictive time 
of RBPMF-CF is the smallest and the predictive time of VarSelect SVD is the largest. 

5. Conclusion 
In this paper, we present a robust BPMF model for CF recommender systems based on 
detecting anomaly rating users. To reduce the impact of shilling attacks on recommendation 
results, we present a modified K-means algorithm to cluster anomaly rating users and based on 
it we further identify and mark the attack users. By combining the detection results with BPMF 
model, we construct a robust CF model and design a robust recommendation algorithm. 
Compared with the baseline algorithms, our algorithm is more accurate and robust.  

In our future work, we will incorporate the item attribute information into BPMF model to 
further improve the recommendation accuracy of our algorithm. In addition, we will explore 
more effective ways to detect the attackers to further improve the robustness of our algorithm.   
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