• Title/Summary/Keyword: recombination efficiency

Search Result 303, Processing Time 0.028 seconds

Energy Conversion Efficiency of TiO2 Dye-sensitized Solar Cells with WO3 Additive (WO3가 첨가된 TiO2 염료감응형 태양전지의 에너지 전환 효율)

  • Lee, Sung Kyu;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.26-30
    • /
    • 2011
  • In order to improve the energy conversion efficiency of dye-sensitized solar cell (DSSC), the photoelectrode was manufactured by using $TiO_2$ and $WO_3$ on combination effects of two conduction bands. The smash procedure of $TiO_2$ and $WO_3$ was carried out by using a paint shaker to enlarge the contact area of semiconductor with dye and electrolyte. The energy conversion efficiency of prepared DSSC was improved about two times from current-voltage curve based on effects of $WO_3$ and smash. The mechanism was suggested that the conduction band of $WO_3$ worked for prohibiting the trapping effects of electrons in conduction band of $TiO_2$. This result is attributed to the prevention of electron recombination between electron in conduction band of $TiO_2$ with dye and electrolyte. Impedance results indicate the improved electron transport at interface of $TiO_2$/dye/electrolyte.

A Study on Optimal Dye-coating Conditions to Reduce Dye-adsorption Time with Improved DSSC Efficiency

  • Seo, Yeong-Ho;Choe, Eun-Chang;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.481.1-481.1
    • /
    • 2014
  • Dye-sensitized solar cell (DSSC) has been extensively investigated as the next generation energy source. Despite attractive features of simple fabrication process and its economical efficiency, there are some problems such as low efficiency and low long-term stability. Many groups have attempted the proposed way to improve the cell efficiency and long-term stability such as low recombination rate between $TiO_2$ surface and electrolyte, the development of new dye molecules capable of light adsorption as broadly as possible, the fabrication of a solid-state DSSC by replacing the liquid electrolyte, and protective coating on glass. In this work, we confirmed new dye-coating conditions to maximize the dye adsorption between the dye and $TiO_2$ nanoparticle surface. The experiment results coating conditions with the coating temperature of $70^{\circ}C$, the dye concentration of 10 mM and the coating time of 3 min. Conditions have two times, three times cycle the experiment in progress efficiency rises.

  • PDF

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.

Effect of Hole Transport Layer on the Electrical and Optical Characteristics of Inverted Organic Light-Emitting Diodes (정공수송층이 역구조 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Se-Jin Im;Dae-Gyu Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.397-402
    • /
    • 2023
  • We have developed inverted green phosphorescent organic light emitting diodes (OLEDs) using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and bis(carbazole-9-yl)biphenyl (CBP) hole transport layers. The driving voltage, current efficiency, power efficiency, and emission characteristics of devices were investigated. While the driving voltage for the same current density was about 1~2 V lower in the devices with the TAPC layer, the maximum luminance was higher in the device with the CBP layer. The maximum current efficiency and power efficiency were 3.2 and 2.7 times higher in the device with the CBP layer, respectively. The higher efficiency in the CBP device resulted from the enhanced hole-electron balance although weak parasitic recombination takes place in the CBP hole transport layer.

Local surface potential and current-voltage behaviors of $Cu(In,Ga)Se_2$ thin-films with different Ga/(In+Ga) content (Ga/(In+Ga) 함량비에 따른 $Cu(In,Ga)Se_2$ 박막의 국소적 영역에서의 표면 퍼텐셜과 전류-전압 특성 연구)

  • Kim, G.Y.;Jeong, A.R.;Jo, W.;Jo, H.J.;Kim, D.H.;Sung, S.J.;Hwang, D.K.;Kang, J.K.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.149-152
    • /
    • 2012
  • $Cu(In,Ga)Se_2$ (CIGS) is one of the most promising photovoltaic materials because of large conversion efficiency which has been achieved with an optimum Ga/(In+Ga) composition in $CuIn_{1-x}Ga_xSe_2$ (X~0.3). The Ga/(In+Ga) content is important to determine band gap, solar cell performances and carrier behaviors at grain boundary (GB). Effects of Ga/(In+Ga) content on physical properties of the CIGS layers have been extensively studied. In previous research, it is reported that GB is not recombination center of CIGS thin-film solar cells. However, GB recombination and electron-hole pair behavior studies are still lacking, especially influence of with different X on CIGS thin-films. We obtained the GB surface potential, local current and I-V characteristic of different X (00.7 while X~0.3 showed higher potential than 100 mV on GBs. Higher potential on GBs appears positive band bending. It can decrease recombination loss because of carrier separation. Therefore, we suggest recombination and electron-hole behaviors at GBs depending on composition of X.

  • PDF

Efficiency Enhancement in Organic Polymer Solar Cells with Ferroelectric Films (강유전 고분자 박막을 이용한 유기고분자 태양전지에서의 효율 증대)

  • Park, Jayoung;Jung, Chi Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.126-132
    • /
    • 2017
  • The power conversion efficiency of organic polymer solar cells was enhanced by introducing a ferroelectric polymer layer at the interface between active layer and metal electrode. The power conversion efficiency was increased by 50% through the enhancement of the open circuit voltage. To investigate the role of the ferroelectric layer on the dissociation process of the excitons, non-radiative portion of the exciton decay was directly measured by using photoacoustic technique. The results show that the ferroelectric nature of the buffer layer does not play any roles on the dissociation process of the excitons, which indicates the efficiency enhancement is not due to the ferroelectricity of the buffer layer.

The Study of Luminescence Efficiency by change of OLED's Hole Transport Layer

  • Lee, Jung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.52-55
    • /
    • 2006
  • The OLEDs(Organic Light-Emitting Diodes) structure organizes the bottom layer using glass, ITO(indium thin oxide), hole injection layer, hole transport layer, emitting material layer, electron transport layer, electron injection layer and cathode using metal. OLED has various advantages. OLEDs research has been divided into structural side and emitting material side. The amount of emitting light and luminescence efficiency has been improved by continuing effort for emitting material layer. The emitting light mechanism of OLEDs consists of electrons and holes injected from cathode and anode recombination in emitting material layer. The mobilities of injected electrons and holes are different. The mobility of holes is faster than that of electrons. In order to get high luminescence efficiency by recombine electrons and holes, the balance of their mobility must be set. The more complex thin film structure of OLED becomes, the more understanding about physical phenomenon in each interface is needed. This paper observed what the thickness change of hole transport layer has an affection through the below experiments. Moreover, this paper uses numerical analysis about carrier transport layer thickness change on the basis of these experimental results that agree with simulation results.

Temperature Study of the Efficiency in single-crystalline Photovoltaic Module (결정질 실리콘 태양전지 모듈의 온도 상승에 따른 효율변화특성)

  • Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.111-112
    • /
    • 2005
  • It is well known that the efficiency of photovoltaic modules decreases with an increase of temperature. In this paper, both efficiency and maximum power(Pm) variation with temperature are investigated using numerical simulation. Various carrier transport mechanisms and several recombination parameters of all the cell materials are taken into account. The theoretical result are compared with the reference data and they are shown to agree quite well over a wide range of temperatures.

  • PDF

The Efficiency Characteristics of the Ferroelectric Polymer Added Organic Solar-cells (강유전 고분자를 첨가한 유기태양전지의 효율 특성)

  • Park, Ja young;Jung, Chi Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.589-594
    • /
    • 2016
  • P3HT:PCBM bulk heterojunction solar cells added with ferroelectric polymer were fabricated and characterized. By incorporating P3HT:PCBM solar cell with P(VDF-TrFE) ferroelectric additive, the power conversion efficiency was increased up to nearly 50%. Photoacoustic analysis on this phenomena was carried out for the first time. Through this study, we find that the ferroelectricity of the polymer additive plays the key role in the enhancement of the power conversion efficiency of the organic solar cell by suppressing the non-radiative recombination of charge transfer exciton more effectively.

Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway

  • Lee, Jae-Young;Kim, Dae-Kwan;Ko, Jeong-Jae;Kim, Keun Pil;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2016
  • Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (${\gamma}H2AX$), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process.