• 제목/요약/키워드: recombinant biocatalyst

검색결과 28건 처리시간 0.021초

광학활성 Phenyl Oxirane 제조용 유전자 재조합 생촉매 개발 (Development of Recombinant Saccharomyces cerevisiae Expressing Epoxide Hydrolase for the Preparation of Chiral Phenyl Oxirane)

  • 이수정;이은정;김초희;이지원;김희숙;이은열
    • 생명과학회지
    • /
    • 제13권1호
    • /
    • pp.105-109
    • /
    • 2003
  • Aspergillus niger #33로부터 RT-PCR 및 PCR방법을 이용하여 epoxide hydrolase (EH)유전자를 클로닝 하고 염기서 열을 분석한 결과 A. niger LCP521 유래의 EB와 85%수준의 유사성을 가지고 있었다. 클로닝된 EH 유전자를 Sacrharomyces cerevisiae에 형질전환 시킨 후 galactose를 inducer로 사용하여 발현시켰다. 유전자 재조합 S. cerevisiae는 라세믹 phenyl oxirane 기질에 대하여 입체선택적 가수분해능이 있음을 확인할 수 있었으며, 이러한 유전자 재조합 EH는 광학활성 에폭사이드 제조를 위한 생촉매로 응용될 수 있을 것이다.

Display of Bacillus macerans Cyclodextrin Glucanotransferase on Cell Surface of Saccharomyces cerevisiae

  • Kim, Kyu-Yong;Kim, Myoun-Dong;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.411-416
    • /
    • 2002
  • Bacillus macerans cyclodextrin glucanotransferase (CGTase) was expressed on the cell surface of Saccharomyces cerevisiae by fusing with Aga2p linked to the membrane-anchored protein, Aga1p. The surface display of CGTase was confirmed by immunofluorescence microscopy and its enzymatic ability to form ${\alpha}$-cyclodextrin from starch. The maximum surface-display of CGTase was obtained by growing recombinant S. cerevisiae at $20^{\circ}C$ and pH 6.0. S. cerevisiae cells displaying CGTase on their surface consumed glucose and maltose, inhibitory byproducts of the CGTase reaction, to enhance the purity of produced cyclodextrins. Accordingly, the experimental results described herein suggest a possibility of using the recombinant S.cerevisiae anchored with bacterial CGTase on the cell surface as a whole-cell biocatalyst for the production of cyclodextrin.

Characterization of Styrene Catabolic Genes of Pseudomonas putida SN1 and Construction of a Recombinant Escherichia coli Containing Styrene Monooxygenase Gene for the Production of (S)-Styrene Oxide

  • Park Mi-So;Bae Jong-Won;Han Ju-Hee;Lee Eun-Yeol;Lee Sun-Gu;Park Sung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1032-1040
    • /
    • 2006
  • Some Pseudomonas species can grow on styrene as a sole carbon and energy source. From the new isolate Pseudomonas putida SN1, the genes for styrene catabolism were cloned and sequenced. They were composed of four structural genes for styrene monooxygenase (styA and styB), styrene oxide isomerase (styC), and phenylacetaldehyde dehydrogenase (styD), along with two genes for the regulatory system (styS and styR). All the genes showed high DNA sequence (91% to 99%) and amino acid sequence (94% to 100%) similarities with the corresponding genes of the previously reported styrene-degrading Pseudomonas strains. A recombinant Escherichia coli to contain the styrene monooxygenase from the SN1 was constructed under the control of the T7 promoter for the production of enantiopure (S)-styrene oxide, which is an important chiral building block in organic synthesis. The recombinant E. coli could convert styrene into an enantiopure (S)-styrene oxide (ee >99%) when induced by IPTG The maximum activity was observed as 140 U/g cell, when induced with 1 mM IPTG at $15^{\circ}C$.

Development of a Novel ATP Bioluminescence Assay Based on Engineered Probiotic Saccharomyces boulardii Expressing Firefly Luciferase

  • Ji Sun Park;Young-Woo Kim;Hyungdong Kim;Sun-Ki Kim;Kyeongsoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1506-1512
    • /
    • 2023
  • Quantitative analysis of adenosine triphosphate (ATP) has been widely used as a diagnostic tool in the food and medical industries. Particularly, the pathogenesis of a few diseases including inflammatory bowel disease (IBD) is closely related to high ATP concentrations. A bioluminescent D-luciferin/luciferase system, which includes a luciferase (FLuc) from the firefly Photinus pyralis as a key component, is the most commonly used method for the detection and quantification of ATP. Here, instead of isolating FLuc produced in recombinant Escherichia coli, we aimed to develop a whole-cell biocatalyst system that does not require extraction and purification of FLuc. To this end, the gene coding for FLuc was introduced into the genome of probiotic Saccharomyces boulardii using the CRISPR/Cas9-based genome editing system. The linear relationship (r2 = 0.9561) between ATP levels and bioluminescence generated from the engineered S. boulardii expressing FLuc was observed in vitro. To explore the feasibility of using the engineered S. boulardii expressing FLuc as a whole-cell biosensor to detect inflammation biomarker (i.e., ATP) in the gut, a colitis mouse model was established using dextran sodium sulfate as a colitogenic compound. Our findings demonstrated that the whole-cell biosensor can detect elevated ATP levels during gut inflammation in mice. Therefore, the simple and powerful method developed herein could be applied for non-invasive IBD diagnosis.

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang;Zhao, Xihua;He, Yuanzhi;Yang, Tianxing;Gao, Huifang;Li, Ganxin;Chen, Feixue;Sun, Meijing;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.92-100
    • /
    • 2017
  • Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

재조합 epoxide hydrolase를 단일 생촉매로 사용한 광학수렴 가수분해반응을 통한 광학활성 (R)-phenyl-1,2-ethanediol 생합성 (Biosynthesis of (R)-phenyl-1,2-ethanediol by using Single Recombinant Epoxide Hydrolase from Caulobacter Crescentus)

  • 이옥경;이은열
    • 공업화학
    • /
    • 제18권3호
    • /
    • pp.279-283
    • /
    • 2007
  • 한 종류의 epoxide hydrolase (EH) 효소 자체가 광학수렴 가수분해(enantioconvergent hydrolysis) 활성을 가지는 Caulobacter crescentus의 epoxide hydrolase (CcEH) 유전자를 PCR로 클로닝하여 재조합시킨 Escherichia coli 생촉매를 개발하였다. 재조합 E. coli 세포 10 mg을 10 mM styrene oxide와 반응시킨 다음 기질과 반응생성물을 chiral GC와 HPLC로 각각 분석 한 결과, (S)-styrene oxide 기질에 대해서는 위치 선택적으로 에폭사이드 링의 ${\alpha}$-탄소를 공격하여 (R)-diol로 전환시켰다. 반면에 (R)-styrene oxide에 대하여는 ${\beta}$-탄소를 공격하여 (R)-diol로 전환시키는 위치선택성을 가지고 있었다. 재조합 CcEH를 단일 생촉매로 사용한 광학수렴 가수분해반응을 통해 20 mM racemic styrene oxide에 대하여 광학순도 85%의 (R)-phenyl-1,2-ethanediol을 수율 69%로 생합성 할 수 있었다

Development of Recombinant Pseudomonas putida Containing Homologous Styrene Monooxygenase Genes for the Production of (S)-Styrene Oxide

  • Bae, Jong-Wan;Han, Ju-Hee;Park, Mi-So;Lee, Sun-Gu;Lee, Eun-Yeol;Jeong, Yong-Joo;Park, Sung-Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.530-537
    • /
    • 2006
  • Recently isolated, Pseudomonas putida SN1 grows on styrene as its sole carbon and energy source through successive oxidation of styrene by styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase. For the production of (S)-styrene oxide, two knockout mutants of SN1 were constructed, one lacking SOI and another lacking both SMO and SOI. These mutants were developed into whole-cell biocatalysts by transformation with a multicopy plasmid vector containing SMO genes (styAB) of the SN1. Neither of these self-cloned recombinants could grow on styrene, but both converted styrene into an enantiopure (S)-styrene oxide (e.e. > 99%). Whole-cell SMO activity was higher in the recombinant constructed from the SOI-deleted mutant (130 U/g cdw) than in the other one (35 U/g cdw). However, the SMO activity of the former was about the same as that of the SOI-deleted SN1 possessing a single copy of the styAB gene that was used as host. This indicates that the copy number of styAB genes is not rate-limiting on SMO catalysis by whole-cell SN1.

Expression of Bacillus macerans Cyclodextrin Glucanotransferase on the Cell Surface of Saccharomyces cerevisiae.

  • 김규용;김명동;한남수;서진호
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.191-193
    • /
    • 2000
  • B. macerans 유래의 CGTase를 yeast surface display기술을 이용하여 S. cerevisiae의 표면에 발현된 것을 halo-test와 immunofluorescence microscopy와 flow cytometry를 통하여 확인하였다. 재조합 효모는 효소의 cyclization작용을 저해하고 CD의 분해작용을 촉진하는 glucose와 maltose를 제거하는 발효공정과 표면 발현된 CGTase의 cyclization 공정을 동시에 수행할 수 있어 CD의 생산, 분리공정을 효율적으로 개선하였다.

  • PDF

Biodegradation of Organophosphate Pesticide Using Recombinant Cyanobacteria with Surface- and Intracellular-Expressed Organophosphorus Hydrolase

  • Chungjatupornchai, Wipa;Fa-Aroonsawat, Sirirat
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.946-951
    • /
    • 2008
  • The opd gene, encoding organophosphorus hydrolase (OPH) from Flavobacterium sp. capable of degrading a wide range of organophosphate pesticides, was surface- and intracellular-expressed in Synechococcus PCC7942, a prime example of photoautotrophic cyanobacteria. OPH was displayed on the cyanobacterial cell surface using the truncated ice nucleation protein as an anchoring motif. A minor fraction of OPH was displayed onto the outermost surface of cyanobacterial cells, as verified by immunostaining visualized under confocal laser scanning microscopy and OPH activity analysis; however, a substantial fraction of OPH was buried in the cell wall, as demonstrated by proteinase K and lysozyme treatments. The cyanobacterial outer membrane acts as a substrate (paraoxon) diffusion barrier affecting whole-cell biodegradation efficiency. After freeze-thaw treatment, permeabilized whole cells with intracellular-expressed OPH exhibited 14-fold higher bioconversion efficiency ($V_{max}/K_m$) than that of cells with surface-expressed OPH. As cyanobacteria have simple growth requirements and are inexpensive to maintain, expression of OPH in cyanobacteria may lead to the development of a low-cost and low-maintenance biocatalyst that is useful for detoxification of organophosphate pesticides.

Production of L-DOPA by Thermostable Tyrosine Phenol-lyase of a Thermophilic Symbiobacterium Species Overexpressed in Recombinant Escherichia coli

  • Lee, Seung-Goo;Ro, Hyeon-Su;Hong, Seung-Pyo;Kim, Eun-Hwa;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권2호
    • /
    • pp.98-102
    • /
    • 1996
  • A thermostable tyrosine phenol-lyase gene of a thermophilic Symbiobacterium species was cloned and overexpressed in Escherichia coli in order to produce the biocatalyst for the synthesis of 3, 4-dihy-droxyphenyl-L-alanine (L-DOPA). The substrates used for the synthetic reaction were pyrocatechol, so-dium pyruvate, and ammonium chloride. The enzyme was stable up to $60^{\circ}C$, and the optimal temperature for the synthesis of L-DOPA was $37^{\circ}C$ . The optimal pH of the reaction was about 8.3. Enzyme activity was highly dependent on the amount of ammonium chloride and the optimal concentration was estimated to be 0.6 M. In the case of pyrocatechol, an inactivation of enzyme activity was observed at con-centrations higher than 0.1 M. Enzyme activity was increased by the presence of ethanol. Under op-timized conditions, L-DOPA production was carried out adding pyrocatechol and sodium pyruvate to the reaction solution intermittently to avoid substrate depletion during the reaction. The concentration of L-DOPA reached 29.8 g/l after 6 h, but the concentration didn t increase further because of the formation of byproducts by a non-enzymatic reaction between L-DOPA and pyruvate.

  • PDF