Biosynthesis of (R)-phenyl-1,2-ethanediol by using Single Recombinant Epoxide Hydrolase from Caulobacter Crescentus

재조합 epoxide hydrolase를 단일 생촉매로 사용한 광학수렴 가수분해반응을 통한 광학활성 (R)-phenyl-1,2-ethanediol 생합성

  • Lee, Ok Kyung (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Lee, Eun Yeol (Department of Food Science and Biotechnology, Kyungsung University)
  • 이옥경 (경성대학교 공과대학 식품생명공학과) ;
  • 이은열 (경성대학교 공과대학 식품생명공학과)
  • Received : 2007.03.28
  • Accepted : 2007.04.24
  • Published : 2007.06.10

Abstract

Epoxide hydrolase (EH) gene of Caulobacter crescentus was cloned by PCR and expressed in Escherichia coli. The C. crescentus EH (CcEH) primarily attacked at the benzylic carbon of (S)-styrene oxide, while the CcEH preferentially attacked at the terminal carbon of (R)-styrene oxide, thus leading to the formation of (R)-phenyl-1,2-ethanediol as the main product. (R)-phenyl-1,2-ethanediol was obtained with 85% enantiomeric excess and yield of 69% from racemic styrene oxide via enantioconvergent hydrolysis by using recombinant CcEH as the single biocatalyst.

한 종류의 epoxide hydrolase (EH) 효소 자체가 광학수렴 가수분해(enantioconvergent hydrolysis) 활성을 가지는 Caulobacter crescentus의 epoxide hydrolase (CcEH) 유전자를 PCR로 클로닝하여 재조합시킨 Escherichia coli 생촉매를 개발하였다. 재조합 E. coli 세포 10 mg을 10 mM styrene oxide와 반응시킨 다음 기질과 반응생성물을 chiral GC와 HPLC로 각각 분석 한 결과, (S)-styrene oxide 기질에 대해서는 위치 선택적으로 에폭사이드 링의 ${\alpha}$-탄소를 공격하여 (R)-diol로 전환시켰다. 반면에 (R)-styrene oxide에 대하여는 ${\beta}$-탄소를 공격하여 (R)-diol로 전환시키는 위치선택성을 가지고 있었다. 재조합 CcEH를 단일 생촉매로 사용한 광학수렴 가수분해반응을 통해 20 mM racemic styrene oxide에 대하여 광학순도 85%의 (R)-phenyl-1,2-ethanediol을 수율 69%로 생합성 할 수 있었다

Keywords

Acknowledgement

Supported by : 경성대학교

References

  1. A. N. Collins, G. N. Sheldrake, and J. Crosby, Chirality in industry, John Wiley & Sons, New York (1992)
  2. P. Besse and H. Veschambre, Tetrahedron, 50, 8885 (1994)
  3. E. Y. Lee and M. L. Shuler, Biotechnol. Bioeng., 95, in press (2007)
  4. A. Archelas and R. Furstoss, Curr. Opin. Chem. Biol., 5, 112 (2001) https://doi.org/10.1016/S1367-5931(00)00179-4
  5. P. Moussou, A. Archelas, J. Baratti, and R. Furstoss, Tetrahedron:Asymmetry, 9, 1539 (1998)
  6. K. Faber and W. Kroutil, Tetrahedron: Asymmetry, 13, 377 (2002) https://doi.org/10.1016/S0957-4166(02)00084-8
  7. Y. Genzel, A. Archelas, Q. B. Broxterman, B. Schulze, and R. Furstoss, J. Mol. Catal. B: Enzym., 16, 217 (2002) https://doi.org/10.1016/S1381-1177(01)00064-9
  8. M. L. Monterde, M. Lombard, A. Archelas, A. Cronin, M. Arand, and R. Furstoss, Tetrahedron: Asymmetry, 15, 2801 (2004) https://doi.org/10.1016/j.tetasy.2004.06.032
  9. L. Cao, J. Lee, J. W. Chen, and T. K. Wood, Biotechnol. Bioeng., 94, 522 (2006) https://doi.org/10.1002/bit.20860
  10. S. Hwang, H. Hyun, B. Lee, Y. Park, E. Y. Lee, and C. Choi, Biotechnol. Biopro. Eng., 11, 282 (2006) https://doi.org/10.1007/BF03026241
  11. S. Hwang, Production of enantiopure 1,2-diols through enantioconvergent process using epoxide hydrolase, PhD thesis, Seoul National University (2006)
  12. G. Qing, L. C. Ma, A. Khorchid, G. V. T. Swapna, T. K. Mal, M. M. Takayama, B. Xia, S. Phadtare, H. Ke, T. Acton, G. T. Montelione, M. Ikura, and M. Inouye, Nature Biotechnol., 22, 877 (2004) https://doi.org/10.1038/nbt984
  13. H. S. Kim, S. J. Lee, and E. Y. Lee, J. Mol. Catal. B: Enzym., 43, 2 (2006) https://doi.org/10.1016/j.molcatb.2006.02.003
  14. H. S. Kim, S. J. Lee, E. J. Lee, J. W. Hwang, S. Park, S. J. Kim, and E .Y. Lee, J. Mol. Catal. B. Enzym., 37, 30 (2005) https://doi.org/10.1016/j.molcatb.2005.09.003
  15. S. J. Lee, H. S. Kim, S. J. Kim, S. Park, B. J. Kim, M. L. Shuler, and E. Y. Lee, Mugil cephalus, Biotechnol. Lett., 29, 237 (2007) https://doi.org/10.1007/s10529-006-9222-4