Development of Recombinant Pseudomonas putida Containing Homologous Styrene Monooxygenase Genes for the Production of (S)-Styrene Oxide

  • Bae, Jong-Wan (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Han, Ju-Hee (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Park, Mi-So (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Lee, Sun-Gu (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Lee, Eun-Yeol (Department of Food Science and Technology, Kyungsung University) ;
  • Jeong, Yong-Joo (Division of Nano Science, Kook Min University) ;
  • Park, Sung-Hoon (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University)
  • Published : 2006.12.31

Abstract

Recently isolated, Pseudomonas putida SN1 grows on styrene as its sole carbon and energy source through successive oxidation of styrene by styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase. For the production of (S)-styrene oxide, two knockout mutants of SN1 were constructed, one lacking SOI and another lacking both SMO and SOI. These mutants were developed into whole-cell biocatalysts by transformation with a multicopy plasmid vector containing SMO genes (styAB) of the SN1. Neither of these self-cloned recombinants could grow on styrene, but both converted styrene into an enantiopure (S)-styrene oxide (e.e. > 99%). Whole-cell SMO activity was higher in the recombinant constructed from the SOI-deleted mutant (130 U/g cdw) than in the other one (35 U/g cdw). However, the SMO activity of the former was about the same as that of the SOI-deleted SN1 possessing a single copy of the styAB gene that was used as host. This indicates that the copy number of styAB genes is not rate-limiting on SMO catalysis by whole-cell SN1.

Keywords

References

  1. Furuhashi, K. (1992) Biological routes to optically active epoxides. pp. 167-186. In: A. N. Collins, G. N. Sheldrake, and J. Crosby (eds.). Chirality in Industry. Wiley, Chichester, UK
  2. Kim, H. S., J.-H. Lee, S. Park, and E. Y. Lee (2004) Biocatalytic preparation of chiral epichlorohydrins using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis. Biotechnol. Bioprocess Eng. 9: 62-64 https://doi.org/10.1007/BF02949324
  3. Choi, W. J. and C. Y. Choi (2005) Production of chiral epoxides: epoxide hydrolase-catalyzed enantioselective hydrolysis. Biotechnol. Bioprocess Eng. 10: 167-179 https://doi.org/10.1007/BF02932009
  4. Beltrametti, F., A. M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, and E. Zennaro (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 63: 2232-2239
  5. O'Connor, K., C. M. Buckley, S. Hartmans, and A. D. Dobson (1995) Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl. Environ. Microbiol. 61: 544-548
  6. Hartmans, S., M. J. van der Werf, and J. A. de Bont (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56: 1347-1351
  7. Van Beilen, J. B., W. A. Duetz, A. Schmid, and B. Witholt (2003) Practical issue in the application of oxygenases. Trends Biotechnol. 21: 170-177 https://doi.org/10.1016/S0167-7799(03)00032-5
  8. Panke, S., M. Held, M. G. Wubbolts, B. Witholt, and A. Schmid (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol. Bioeng. 80: 33-41 https://doi.org/10.1002/bit.10346
  9. Park, M. S., J. W. Bae, J. H. Han, E. Y. Lee, S.-G. Lee, and S. Park (2006) Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide. J. Microbiol. Biotechnol. 16: 1032-1040
  10. Chang, H.-L. and L. Alvarez-Cohen (1995) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol. Bioeng. 45: 440-449 https://doi.org/10.1002/bit.260450509
  11. Lee, E. Y., J. M. Kang, and S. Park (2003) Evaluation of transformation capacity for degradation of ethylene chlorides by Methylosinus trichosporium OB3b. Biotechnol. Bioprocess Eng. 8: 309-312 https://doi.org/10.1007/BF02949224
  12. Kang, J., E. Y. Lee, and S. Park (2001) Co-metabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations methane or methanol. Biotechnol. Lett. 23: 1877-1882 https://doi.org/10.1023/A:1012758803576
  13. Heipieper, H. J., F. J. Weber, J. Sikkema, H. Keweloh, and J. A. M. de Bont (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12: 409-415 https://doi.org/10.1016/0167-7799(94)90029-9
  14. Choi, K. O., S. H. Song, and Y. J. Yoo (2004) Permeabilization of Ochrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst. Biotechnol. Bioprocess Eng. 9: 147-150 https://doi.org/10.1007/BF02942284
  15. Panke, S., V. de Lorenzo, A. Kaiser, B. Witholt, and M. G. Wubbolts (1999) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl. Environ. Microbiol. 65: 5619-5623
  16. Panke, S., M. G. Wubbolts, A. Schmid, and B. Witholt (2000) Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69: 91-100 https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-X
  17. Kieboom, J., J. J. Dennis, J. A. M. de Bont, and G. J. Zylstra (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J. Biol. Chem. 273: 85-91 https://doi.org/10.1074/jbc.273.1.85
  18. Schweizer, H. P. (1991) Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97: 109-121 https://doi.org/10.1016/0378-1119(91)90016-5
  19. Park, M. S., J. H. Han, S. S. Yoo, E. Y. Lee, S. G. Lee, and S. Park (2005) Degradation of styrene by a new isolate Pseudomonas putida SN1. Kor. J. Chem. Eng. 22: 418-424 https://doi.org/10.1007/BF02719421
  20. Han, J. H., M. S. Park, J. W. Bae, E. Y. Lee, Y. J. Yoon, S.-G. Lee, and S. Park (2006) Production of (S)-styrene oxide using styrene oxide isomerase negative mutant of Pseudomonas putida SN1. Enzyme Microb. Technol. 39: 1264-1269 https://doi.org/10.1016/j.enzmictec.2006.03.002
  21. Sambrook, J., E. F. Fritsch, and T. Maniatis (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
  22. Padda, R. S., K. K. Pandey, S. Kaul, V. D. Nair, R. K. Jain, S. K. Basu, and T. Chakrabarti (2001) A novel gene encoding a 54 kDa polypeptide is essential for butane utilization by Pseudomonas sp. IMT37. Microbiology 147: 2479- 2491
  23. Speer, B. S., N. B. Shoemaker, and A. A. Salyers (1992) Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev. 5: 387-399
  24. Otto, K., K. Hofstetter, M. Rothlisberger, B. Witholt, and A. Schmid (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J. Bacteriol. 186: 5292- 5302 https://doi.org/10.1128/JB.186.16.5292-5302.2004
  25. Mooney, A., N. D. O'Leary, and A. D. W. Dobson (2006) Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3. Appl. Environ. Microbiol. 72: 1302-1309 https://doi.org/10.1128/AEM.72.2.1302-1309.2006
  26. Panke, S., B. Witholt, A. Schmid, and M. G. Wubbolts (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl. Environ. Microbiol. 64: 2032-2043